21 research outputs found

    Cosmic Strings in the Abelian Higgs Model with Conformal Coupling to Gravity

    Full text link
    Cosmic string solutions of the abelian Higgs model with conformal coupling to gravity are shown to exist. The main characteristics of the solutions are presented and the differences with respect to the minimally coupled case are studied. An important difference is the absence of Bogomolnyi cosmic string solutions for conformal coupling. Several new features of the abelian Higgs cosmic strings of both types are discussed. The most interesting is perhaps a relation between the angular deficit and the central magnetic field which is bounded by a critical value.Comment: 22 pages, 10 figures; to appear in Phys. Rev.

    Complete Classification of the String-like Solutions of the Gravitating Abelian Higgs Model

    Get PDF
    The static cylindrically symmetric solutions of the gravitating Abelian Higgs model form a two parameter family. In this paper we give a complete classification of the string-like solutions of this system. We show that the parameter plane is composed of two different regions with the following characteristics: One region contains the standard asymptotically conic cosmic string solutions together with a second kind of solutions with Melvin-like asymptotic behavior. The other region contains two types of solutions with bounded radial extension. The border between the two regions is the curve of maximal angular deficit of 2π2\pi.Comment: 12 pages, 4 figure

    Unwrapping Closed Timelike Curves

    Full text link
    Closed timelike curves (CTCs) appear in many solutions of the Einstein equation, even with reasonable matter sources. These solutions appear to violate causality and so are considered problematic. Since CTCs reflect the global properties of a spacetime, one can attempt to change its topology, without changing its geometry, in such a way that the former CTCs are no longer closed in the new spacetime. This procedure is informally known as unwrapping. However, changes in global identifications tend to lead to local effects, and unwrapping is no exception, as it introduces a special kind of singularity, called quasi-regular. This "unwrapping" singularity is similar to the string singularities. We give two examples of unwrapping of essentially 2+1 dimensional spacetimes with CTCs, the Gott spacetime and the Godel universe. We show that the unwrapped Gott spacetime, while singular, is at least devoid of CTCs. In contrast, the unwrapped Godel spacetime still contains CTCs through every point. A "multiple unwrapping" procedure is devised to remove the remaining circular CTCs. We conclude that, based on the two spacetimes we investigated, CTCs appearing in the solutions of the Einstein equation are not simply a mathematical artifact of coordinate identifications, but are indeed a necessary consequence of General Relativity, provided only that we demand these solutions do not possess naked quasi-regular singularities.Comment: 29 pages, 9 figure

    Magnetic Branes in Gauss-Bonnet Gravity

    Full text link
    We present two new classes of magnetic brane solutions in Einstein-Maxwell-Gauss-Bonnet gravity with a negative cosmological constant. The first class of solutions yields an (n+1)(n+1)-dimensional spacetime with a longitudinal magnetic field generated by a static magnetic brane. We also generalize this solution to the case of spinning magnetic branes with one or more rotation parameters. We find that these solutions have no curvature singularity and no horizons, but have a conic geometry. In these spacetimes, when all the rotation parameters are zero, the electric field vanishes, and therefore the brane has no net electric charge. For the spinning brane, when one or more rotation parameters are non zero, the brane has a net electric charge which is proportional to the magnitude of the rotation parameter. The second class of solutions yields a spacetime with an angular magnetic field. These solutions have no curvature singularity, no horizon, and no conical singularity. Again we find that the net electric charge of the branes in these spacetimes is proportional to the magnitude of the velocity of the brane. Finally, we use the counterterm method in the Gauss-Bonnet gravity and compute the conserved quantities of these spacetimes.Comment: 17 pages, No figure, The version to be published in Phys. Rev.

    Horizonless Rotating Solutions in (n+1)(n+1)-dimensional Einstein-Maxwell Gravity

    Full text link
    We introduce two classes of rotating solutions of Einstein-Maxwell gravity in n+1n+1 dimensions which are asymptotically anti-de Sitter type. They have no curvature singularity and no horizons. The first class of solutions, which has a conic singularity yields a spacetime with a longitudinal magnetic field and kk rotation parameters. We show that when one or more of the rotation parameters are non zero, the spinning brane has a net electric charge that is proportional to the magnitude of the rotation parameters. The second class of solutions yields a spacetime with an angular magnetic field and % \kappa boost parameters. We find that the net electric charge of these traveling branes with one or more nonzero boost parameters is proportional to the magnitude of the velocity of the brane. We also use the counterterm method inspired by AdS/CFT correspondence and calculate the conserved quantities of the solutions. We show that the logarithmic divergencies associated to the Weyl anomalies and matter field are zero, and the rr divergence of the action can be removed by the counterterm method.Comment: 14 pages, references added, Sec. II amended, an appendix added. The version to appear in Phys. Rev.

    Mechanisms underlying a thalamocortical transformation during active tactile sensation

    Get PDF
    During active somatosensation, neural signals expected from movement of the sensors are suppressed in the cortex, whereas information related to touch is enhanced. This tactile suppression underlies low-noise encoding of relevant tactile features and the brain’s ability to make fine tactile discriminations. Layer (L) 4 excitatory neurons in the barrel cortex, the major target of the somatosensory thalamus (VPM), respond to touch, but have low spike rates and low sensitivity to the movement of whiskers. Most neurons in VPM respond to touch and also show an increase in spike rate with whisker movement. Therefore, signals related to self-movement are suppressed in L4. Fast-spiking (FS) interneurons in L4 show similar dynamics to VPM neurons. Stimulation of halorhodopsin in FS interneurons causes a reduction in FS neuron activity and an increase in L4 excitatory neuron activity. This decrease of activity of L4 FS neurons contradicts the "paradoxical effect" predicted in networks stabilized by inhibition and in strongly-coupled networks. To explain these observations, we constructed a model of the L4 circuit, with connectivity constrained by in vitro measurements. The model explores the various synaptic conductance strengths for which L4 FS neurons actively suppress baseline and movement-related activity in layer 4 excitatory neurons. Feedforward inhibition, in concert with recurrent intracortical circuitry, produces tactile suppression. Synaptic delays in feedforward inhibition allow transmission of temporally brief volleys of activity associated with touch. Our model provides a mechanistic explanation of a behavior-related computation implemented by the thalamocortical circuit

    Modeling of Laser-Tempering Process for Hyper-Eutectoid Steels

    No full text
    Laser surface tempering causes reduction in the surface hardness without affecting the bulk material hardness. The tempering behavior can be advantageous in advanced manufacturing processes that require controlled softening of the surface layers of through-hardened high-strength steels. This paper presents a computational phase change kinetics-based model for selecting the laser parameters that temper the surface layers of a through-hardened hyper-eutectoid steel (AISI 52100) over a known depth. First, a three-dimensional analytical thermal model is used to evaluate the temperature field produced in the material due to thermal cycles produced by laser scanning of the surface. The computed temperature histories are then fed to the phase-change model to predict the surface and subsurface hardness for the chosen laser-processing conditions. Microstructural analysis of the laser-treated AISI 52100 workpiece surface is presented for different laser-processing conditions. It is shown that good agreement is achieved between the predicted and measured surface hardness. © 2014 The Minerals, Metals & Materials Society and ASM International.
    corecore