1,840 research outputs found

    Density Functional Theory of Multicomponent Quantum Dots

    Full text link
    Quantum dots with conduction electrons or holes originating from several bands are considered. We assume the particles are confined in a harmonic potential and assume the electrons (or holes) belonging to different bands to be different types of fermions with isotropic effective masses. The density functional method with the local density approximation is used. The increased number of internal (Kohn-Sham) states leads to a generalisation of Hund's first rule at high densities. At low densitites the formation of Wigner molecules is favored by the increased internal freedom.Comment: 11 pages, 5 figure

    Magnetism in one-dimensional quantum dot arrays

    Full text link
    We employ the density functional Kohn-Sham method in the local spin-density approximation to study the electronic structure and magnetism of quasi one-dimensional periodic arrays of few-electron quantum dots. At small values of the lattice constant, the single dots overlap, forming a non-magnetic quantum wire with nearly homogenous density. As the confinement perpendicular to the wire is increased, i.e. as the wire is squeezed to become more one-dimensional, it undergoes a spin-Peierls transition. Magnetism sets in as the quantum dots are placed further apart. It is determined by the electronic shell filling of the individual quantum dots. At larger values of the lattice constant, the band structure for odd numbers of electrons per dot indicates that the array could support spin-polarized transport and therefore act as a spin filter.Comment: 11 pages, 6 figure

    d0 Perovskite-Semiconductor Electronic Structure

    Full text link
    We address the low-energy effective Hamiltonian of electron doped d0 perovskite semiconductors in cubic and tetragonal phases using the k*p method. The Hamiltonian depends on the spin-orbit interaction strength, on the temperature-dependent tetragonal distortion, and on a set of effective-mass parameters whose number is determined by the symmetry of the crystal. We explain how these parameters can be extracted from angle resolved photo-emission, Raman spectroscopy, and magneto-transport measurements and estimate their values in SrTiO3

    Striatal dopamine D2 receptor binding of risperidone in schizophrenic patients as assessed by 123I-iodobenzamide SPECT: a comparative study with olanzapine

    Get PDF
    The aim of this investigation was to compare the degree of striatal dopamine-(D2) receptor blockade by two atypical antipsychotic drugs, risperidone and olanzapine. The percentage of D2 receptor occupancy during treatment was calculated by comparing the results of 123I-iodobenzamide SPECT with those from healthy control subjects. Twenty inpatients suffering from schizophrenia or schizoaffective psychosis according to DSM IV/ICD-10 criteria were treated with clinically recommended doses of risperidone and compared with 13 inpatients treated with up to 20 mg olanzapine. Neuroleptic dose and D2 receptor blockade correlated strongly for both risperidone (Pearson r = –0.86, p = 0.0001) and olanzapine (Pearson r = –0.77, p = 0.002). There was no significant difference between the D2 receptor occupancy of the two substances when given in the clinically recommended dose range (unpaired t-test, t= –0.112, p=0.911)

    Doping-induced carrier profiles in organic semiconductors determined from capacitive extraction-current transients

    Get PDF
    A method to determine the doping induced charge carrier profiles in lightly and moderately doped organic semiconductor thin films is presented. The theory of the method of Charge Extraction by a Linearly Increasing Voltage technique in the doping-induced capacitive regime (doping-CELIV) is extended to the case with non-uniform doping profiles and the analytical description is verified with drift-diffusion simulations. The method is demonstrated experimentally on evaporated organic small- molecule thin films with a controlled doping profile, and solution-processed thin films where the non- uniform doping profile is unintentional, probably induced during the deposition process, and a priori unknown. Furthermore, the method offers a possibility of directly probing charge-density distributions at interfaces between highly doped and lightly doped or undoped layers

    Notes on static cylindrical shells

    Full text link
    Static cylindrical shells made of various types of matter are studied as sources of the vacuum Levi-Civita metrics. Their internal physical properties are related to the two essential parameters of the metrics outside. The total mass per unit length of the cylinders is always less than 1/4. The results are illustrated by a number of figures.Comment: 14 pages, 8 figure

    Continuum field description of crack propagation

    Full text link
    We develop continuum field model for crack propagation in brittle amorphous solids. The model is represented by equations for elastic displacements combined with the order parameter equation which accounts for the dynamics of defects. This model captures all important phenomenology of crack propagation: crack initiation, propagation, dynamic fracture instability, sound emission, crack branching and fragmentation.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Lett. Additional information can be obtained from http://gershwin.msd.anl.gov/theor

    Phase-Field Model of Mode III Dynamic Fracture

    Full text link
    We introduce a phenomenological continuum model for mode III dynamic fracture that is based on the phase-field methodology used extensively to model interfacial pattern formation. We couple a scalar field, which distinguishes between ``broken'' and ``unbroken'' states of the system, to the displacement field in a way that consistently includes both macroscopic elasticity and a simple rotationally invariant short scale description of breaking. We report two-dimensional simulations that yield steady-state crack motion in a strip geometry above the Griffith threshold.Comment: submitted to PR

    Asymptotic Structure of Symmetry Reduced General Relativity

    Get PDF
    Gravitational waves with a space-translation Killing field are considered. In this case, the 4-dimensional Einstein vacuum equations are equivalent to the 3-dimensional Einstein equations with certain matter sources. This interplay between 4- and 3- dimensional general relativity can be exploited effectively to analyze issues pertaining to 4 dimensions in terms of the 3-dimensional structures. An example is provided by the asymptotic structure at null infinity: While these space-times fail to be asymptotically flat in 4 dimensions, they can admit a regular completion at null infinity in 3 dimensions. This completion is used to analyze the asymptotic symmetries, introduce the analog of the 4-dimensional Bondi energy-momentum and write down a flux formula. The analysis is also of interest from a purely 3-dimensional perspective because it pertains to a diffeomorphism invariant 3-dimensional field theory with {\it local} degrees of freedom, i.e., to a midi-superspace. Furthermore, due to certain peculiarities of 3 dimensions, the description of null infinity does have a number of features that are quite surprising because they do not arise in the Bondi-Penrose description in 4 dimensions.Comment: 39 Pages, REVTEX, CGPG-96/5-
    • …
    corecore