88 research outputs found

    Nbr1 Is a Novel Inhibitor of Ligand-Mediated Receptor Tyrosine Kinase Degradation

    Get PDF
    endocytic trafficking and selective autophagy. However, the exact function of Nbr1 in these contexts has not been studied in detail. Here we investigated the role of Nbr1 in the trafficking of receptor tyrosine kinases (RTKs). We report that ectopic Nbr1 expression inhibits the ligand-mediated lysosomal degradation of RTKs, and this is probably done via the inhibition of receptor internalization. Conversely, the depletion of endogenous NBR1 enhances RTK degradation. Analyses of truncation mutations demonstrated that the C terminus of Nbr1 is essential but not sufficient for this activity. Moreover, the C terminus of Nbr1 is essential but not sufficient for the localization of the protein to late endosomes. We demonstrate that the C terminus of Nbr1 contains a novel membrane-interacting amphipathic -helix, which is essential for the late endocytic localization of the protein but not for its effect on RTK degradation. Finally, autophagic and late endocytic localizations of Nbr1 are independent of one another, suggesting that the roles of Nbr1 in each context might be distinct. Our results define Nbr1 as a negative regulator of ligand-mediated RTK degradation and reveal the interplay between its various regions for protein localization and function

    The Sound of the hallmarks of cancer

    Get PDF
    The objective of this research is to create a mixed portfolio of data-driven composition and performance interfaces, fixed Electroacoustic/Computer music compositions, and live-improvised musical and audiovisual works reflecting cancer as a disease. The main methodology in generating the raw sonic material is the sonification of high-throughput, protein/RNA fold-change data, derived from the bio- molecular research of cancer cells. This data and relevant insight into the field are obtained as part of a collaboration with Barts Cancer Institute, in London, UK. Furthermore, for the purpose of musical effectiveness and reaching wider audiences, a focus has been placed on balancing the use of data-driven sonic material with composer-driven musical choices, by drawing upon the narrative of the Hallmarks of Cancer (Hanahan and Weinberg, 2011) which is a widely accepted conceptual framework in the field of cancer research for understanding the various biomolecular processes responsible for causing cancer. This method is adopted in order to inspire musical form, and guide some of the syntactic and aesthetic choices within both fixed and improvised works. In addition, this research also reflects upon the use of data sonification as an artistic tool and practice, while also addressing the contradictions and contention that arise as a result of scientific aims and expectations regarding sonification, resulting in a proposed original model for framing and classifying artistic works incorporating this approach

    Spred2 interaction with the late endosomal protein NBR1 down-regulates fibroblast growth factor receptor signaling

    Get PDF
    Neighbor of BRCA1 (NBR1) suppresses growth factor responses by redirecting activated receptors to lysosomes for degradation

    An ERK1/2-driven RNA-binding switch in nucleolin drives ribosome biogenesis and pancreatic tumorigenesis downstream of RAS oncogene

    Get PDF
    Oncogenic RAS signaling reprograms gene expression through both transcriptional and post‐transcriptional mechanisms. While transcriptional regulation downstream of RAS is relatively well characterized, how RAS post‐transcriptionally modulates gene expression to promote malignancy remains largely unclear. Using quantitative RNA interactome capture analysis, we here reveal that oncogenic RAS signaling reshapes the RNA‐bound proteomic landscape of pancreatic cancer cells, with a network of nuclear proteins centered around nucleolin displaying enhanced RNA‐binding activity. We show that nucleolin is phosphorylated downstream of RAS, which increases its binding to pre‐ribosomal RNA (rRNA), boosts rRNA production, and promotes ribosome biogenesis. This nucleolin‐dependent enhancement of ribosome biogenesis is crucial for RAS‐induced pancreatic cancer cell proliferation and can be targeted therapeutically to inhibit tumor growth. Our results reveal that oncogenic RAS signaling drives ribosome biogenesis by regulating the RNA‐binding activity of nucleolin and highlight a crucial role for this mechanism in RAS‐mediated tumorigenesis

    Centrosome amplification mediates small extracellular vesicles secretion via lysosome disruption

    Get PDF
    PreprintSummary Bidirectional communication between cells and their surrounding environment is critical in both normal and pathological settings. Extracellular vesicles (EVs), which facilitate the horizontal transfer of molecules between cells, are recognized as an important constituent of cell-cell communication. In cancer, alterations in EV secretion contribute to the growth and metastasis of tumor cells. However, the mechanisms underlying these changes remain largely unknown. Here, we show that centrosome amplification is associated with and sufficient to promote small extracellular vesicle ( S EV) secretion in pancreatic cancer cells. This is a direct result due of lysosomal dysfunction, caused by increased reactive oxygen species (ROS) downstream of extra centrosomes. Defects in lysosome function promotes multivesicular body fusion with the plasma membrane, thereby enhancing S EV secretion. Furthermore, we find that S EVs secreted in response to amplified centrosomes are functionally distinct and activate pancreatic stellate cells (PSCs). These activated PSCs promote the invasion of pancreatic cancer cells in heterotypic 3-D cultures. We propose that S EVs secreted by cancer cells with amplified centrosomes influence the bidirectional communication between the tumor cells and the surrounding stroma to promote malignancy

    Subcellular mRNA Localization Regulates Ribosome Biogenesis in Migrating Cells

    Get PDF
    Translation of ribosomal protein-coding mRNAs (RP-mRNAs) constitutes a key step in ribosome biogenesis, but the mechanisms that modulate RP-mRNA translation in coordination with other cellular processes are poorly defined. Here, we show that subcellular localization of RP-mRNAs acts as a key regulator of their translation during cell migration. As cells migrate into their surroundings, RP-mRNAs localize to the actin-rich cell protrusions. This localization is mediated by La-related protein 6 (LARP6), an RNA-binding protein that is enriched in protrusions. Protrusions act as hotspots of translation for RP-mRNAs, enhancing RP synthesis, ribosome biogenesis, and the overall protein synthesis in migratory cells. In human breast carcinomas, epithelial-to-mesenchymal transition (EMT) upregulates LARP6 expression to enhance protein synthesis and support invasive growth. Our findings reveal LARP6-mediated mRNA localization as a key regulator of ribosome biogenesis during cell migration and demonstrate a role for this process in cancer progression downstream of EMT

    An ERK1/2-driven RNA-binding switch in nucleolin drives ribosome biogenesis and pancreatic tumorigenesis downstream of RAS oncogene

    Get PDF
    Oncogenic RAS signaling reprograms gene expression through both transcriptional and post-transcriptional mechanisms. While transcriptional regulation downstream of RAS is relatively well characterized, how RAS post-transcriptionally modulates gene expression to promote malignancy remains largely unclear. Using quantitative RNA interactome capture analysis, we here reveal that oncogenic RAS signaling reshapes the RNA-bound proteomic landscape of pancreatic cancer cells, with a network of nuclear proteins centered around nucleolin displaying enhanced RNA-binding activity. We show that nucleolin is phosphorylated downstream of RAS, which increases its binding to pre-ribosomal RNA (rRNA), boosts rRNA production, and promotes ribosome biogenesis. This nucleolin-dependent enhancement of ribosome biogenesis is crucial for RAS-induced pancreatic cancer cell proliferation and can be targeted therapeutically to inhibit tumor growth. Our results reveal that oncogenic RAS signaling drives ribosome biogenesis by regulating the RNA-binding activity of nucleolin and highlight a crucial role for this mechanism in RAS-mediated tumorigenesis

    A preclinical pipeline to evaluate migrastatics as therapeutic agents in metastatic melanoma

    Get PDF
    © The Author(s) 2021.[Background]: Metastasis is a hallmark of cancer and responsible for most cancer deaths. Migrastatics were defined as drugs interfering with all modes of cancer cell invasion and thus cancers’ ability to metastasise. First anti-metastatic treatments have recently been approved. [Methods]: We used bioinformatic analyses of publicly available melanoma databases. Experimentally, we performed in vitro target validation (including 2.5D cell morphology analysis and mass spectrometric analysis of RhoA binding partners), developed a new traceable spontaneously metastasising murine melanoma model for in vivo validation, and employed histology (haematoxylin/eosin and phospho-myosin II staining) to confirm drug action in harvested tumour tissues. [Results]: Unbiased and targeted bioinformatic analyses identified the Rho kinase (ROCK)-myosin II pathway and its various components as potentially relevant targets in melanoma. In vitro validation demonstrated redundancy of several RhoGEFs upstream of RhoA and confirmed ROCK as a druggable target downstream of RhoA. The anti-metastatic effects of two ROCK inhibitors were demonstrated through in vivo melanoma metastasis tracking and inhibitor effects also confirmed ex vivo by digital pathology. [Conclusions]: We proposed a migrastatic drug development pipeline. As part of the pipeline, we provide a new traceable spontaneous melanoma metastasis model for in vivo quantification of metastasis and anti-metastatic effects by non-invasive imaging.GOF’s lab was supported by Cancer Research UK [C48390/A21153], Worldwide Cancer Research [16-1153], and King’s Health Partners [King’s Medical Research Trust Joint Research Committee studentship to A.V.]. B.F. was supported by a King’s Health Partners studentship to V.S.M. and G.O.F. V.S.M.’s lab was supported by Cancer Research UK [C33043/A12065] and [C33043/A24478] (V.S.M., E.C.M., J.L.O., L.B. and GC), the Royal Society [RG110591] (V.S.M.), The Harry J. Lloyd Charitable Trust (J.L.O. and V.S.M.), the Barts Charity (V.S.M., J.L.O., O.M., I.R.H. and E.C.M.), the Fundacion Alfonso Martin Escudero and Marie Sklodowska-Curie Action [H2020-MSCA-IF-2014-EF-ST] (I.R.H.), and Fundacion Ramon Areces (E.C.M.). F.M. was supported by an MRC Career Development Award (MR/P009417/1). This work was further supported by the Department of Health (DoH) via the National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre award to King’s Health Partners, and the Wellcome/EPSRC Centre for Medical Engineering [WT203148/Z/16/Z]. Views expressed are those of the authors and not necessarily those of the NHS, NIHR or DoH
    corecore