27 research outputs found

    Theoretical Studies of the Interaction between Screw Surface and Material in the Mixer

    No full text
    Mixing is one of the most commonly used processes in food, animal feed, chemical, cosmetic, etc., industries. It is supposed to provide high-quality homogenous, nutritious mixtures. To provide appropriate mixing of materials while maintaining the process high efficiency and low energy consumption it is crucial to explore and describe the material flow caused by the movement of mixing elements and the contact between particles. The process of mixing is also affected by structural features of the machine components and the mixing chamber, speed of mixing, and properties of the mixed materials, such as the size of particles, moisture, friction coefficients. Thus, modeling of the phenomena that accompany the process of mixing using the above-listed parameters is indispensable for appropriate implementation of the process. The paper provides theoretical power calculations that take into account the material speed change, the impact of the material friction coefficient on the screw steel surface and the impact of the friction coefficient on the material, taking into account the loading height of the mixing chamber and the chamber loading value. Dependencies between the mixer power and the product degree of fineness, rotational speed of screw friction coefficients, the number of windings per length unit, and width of the screw tape have been presented on the basis of a developed model. It has been found that power increases along with an increase in the value of these parameters. Verification of the theoretical model indicated consistence of the predicted power demand with the power demand determined in tests performed on a real object for values of the assumed, effective loading, which was 65–75%

    Content of phenolic compounds in soils originating from two long-term fertilization experiments

    No full text
    The objective of the study was to compare the impact of three systems of multiannual fertilization applied in two long-term field experiments on the content of phenolic compounds in the soil. In the study, both natural (manure, slurry) and mineral (NPK) fertilizers were used, along with combined, organic-and-mineral fertilization. Experiment I was established in 1972 on grey brown podzolic soil; experiment II, in 1973 on brown soil. In both experiments crops were cultivated in a 7-year rotation, with a 75% share of cereals. The experimental samples were taken from the top layer of soil after 36 (experiment I) and 35 (experiment II) years following the establishment of the experiments. It was demonstrated that the presence of phenolic compounds in the soils was significantly dependent on the contents of organic C and total N, type of soil and the type and dose of used fertilizers. In grey brown podzolic soil, the content of total phenolic compounds was at a lower level than the content found in brown soil. Multiannual fertilization contributed to an increase in the content of total phenolic compounds in relation to the values obtained in control objects, which was particularly reflected in the soil originating from objects fertilized with slurry applied at a dose being equivalent to manure in terms of the amount of introduced organic carbon. The percentage of water-soluble phenols in the total content of these compounds in grey brown podzolic soil was at the level of 18.4%, while in brown soil it amounted to 29.1%

    Construction design of apple sorter

    No full text
    When assessing the quality of fruit and packaging process, fruit-producing farms owners decide to evaluate fruit by people or automated sorting lines. The purchase of an automated sorting line generates high costs for the company, but it brings benefits in the form of increased work efficiency, and the better organization of fruit packaging and storage processes. The use of that machinery and equipment is common in agricultural farms as well as in fruit and vegetable processing companies. Despite the widespread use of various types of fruit sorters, the analysis of the operation of the designed device and the study of its technological parameters is still a current research problem. During operation of the devices for sorting fruit there are many technical problems affecting technological processes and quality of fruits. In order to improve the efficiency of sorting fruit, this process should be quickly and accurately. The purpose of this paper is to present the automated apple sorter line construction design, and software for quality controlling fruits. Selected elements of the sorter structure including endurance calculation using the Finite Element Method (FEM) and fruit control system using image analysis were presented

    Construction design of apple sorter

    No full text
    When assessing the quality of fruit and packaging process, fruit-producing farms owners decide to evaluate fruit by people or automated sorting lines. The purchase of an automated sorting line generates high costs for the company, but it brings benefits in the form of increased work efficiency, and the better organization of fruit packaging and storage processes. The use of that machinery and equipment is common in agricultural farms as well as in fruit and vegetable processing companies. Despite the widespread use of various types of fruit sorters, the analysis of the operation of the designed device and the study of its technological parameters is still a current research problem. During operation of the devices for sorting fruit there are many technical problems affecting technological processes and quality of fruits. In order to improve the efficiency of sorting fruit, this process should be quickly and accurately. The purpose of this paper is to present the automated apple sorter line construction design, and software for quality controlling fruits. Selected elements of the sorter structure including endurance calculation using the Finite Element Method (FEM) and fruit control system using image analysis were presented

    Theoretical Studies of the Interaction between Screw Surface and Material in the Mixer

    No full text
    Mixing is one of the most commonly used processes in food, animal feed, chemical, cosmetic, etc., industries. It is supposed to provide high-quality homogenous, nutritious mixtures. To provide appropriate mixing of materials while maintaining the process high efficiency and low energy consumption it is crucial to explore and describe the material flow caused by the movement of mixing elements and the contact between particles. The process of mixing is also affected by structural features of the machine components and the mixing chamber, speed of mixing, and properties of the mixed materials, such as the size of particles, moisture, friction coefficients. Thus, modeling of the phenomena that accompany the process of mixing using the above-listed parameters is indispensable for appropriate implementation of the process. The paper provides theoretical power calculations that take into account the material speed change, the impact of the material friction coefficient on the screw steel surface and the impact of the friction coefficient on the material, taking into account the loading height of the mixing chamber and the chamber loading value. Dependencies between the mixer power and the product degree of fineness, rotational speed of screw friction coefficients, the number of windings per length unit, and width of the screw tape have been presented on the basis of a developed model. It has been found that power increases along with an increase in the value of these parameters. Verification of the theoretical model indicated consistence of the predicted power demand with the power demand determined in tests performed on a real object for values of the assumed, effective loading, which was 65–75%

    Vztah mezi infračervenými spektry opotřebovaných motorových olejů a jejich kinematickou viskozitou

    No full text
    Przedstawiono możliwość określania lepkości kinematycznej w temp. 100°C (LK100°C) zużytego mineralnego oleju silnikowego, wykorzystując spektroskopię w podczerwieni z transformacją Fouriera (FTIR) w kombinacji z metodą najmniejszych cząstkowych kwadratów PLS (partial least square). Uzyskaną wartość porównano z wynikiem otrzymanym standardową metodą (określoną normą ASTM). Najwłaściwszy okazał się algorytm FTIR-PLS pracujący z plikiem danych w zakresie spektrálním 1262–654 cm-1 bez matematycznej obróbki widm. Współczynnik korelacji pomiędzy wartościami LK100°C szacowanymi za pomocą FTIR-PLS a tymi oznaczonymi wg normy wynosił 0,99.IR spektrometrie v kombinaci s regresní metodou částečných nejmenších čtverců (PLS) byla použita jako alternativní metoda pro stanovení kinematické viskozita opotřebeného motorového oleje při 100 °C. Vhodná spektrální oblast byla1262-654 cm-1 bez matematické úpravy spekter. Bylo dosaženo velmi významné korelace R = 0,99 mezi predikovanými hodnotami viskozity z IR modelu a hodnotami získanými laboratorní standardní laboratorní metodou

    Analysis of the market of electric tractors in agricultural production

    No full text
    In Poland, the market of electric field tractors is practically non-existent. There are individual models in offers dedicated to the agriculture made by foreign producers. However, these offers are presented mainly at agricultural fairs. The article presents the research on the needs of farms for electric tractors and presents the possibilities of developing electro mobility in this sector of the economy. Questionnaire was presented, data were collected from those working in the agricultural sector. The data will be used to gauge attitudes and opinions towards alternative power systems implemented in agriculture

    Analysis of the market of electric tractors in agricultural production

    No full text
    In Poland, the market of electric field tractors is practically non-existent. There are individual models in offers dedicated to the agriculture made by foreign producers. However, these offers are presented mainly at agricultural fairs. The article presents the research on the needs of farms for electric tractors and presents the possibilities of developing electro mobility in this sector of the economy. Questionnaire was presented, data were collected from those working in the agricultural sector. The data will be used to gauge attitudes and opinions towards alternative power systems implemented in agriculture

    Assessment of the Life Cycle of a Wind and Photovoltaic Power Plant in the Context of Sustainable Development of Energy Systems

    No full text
    The conversion of kinetic energy from wind and solar radiation into electricity during the operation of wind and photovoltaic power plants causes practically no emissions of chemical compounds that are harmful to the environment. However, the production of their materials and components, as well as their post-use management after the end of their operation, is highly consumptive of energy and materials. For this reason, this article aims to assess the life cycle of a wind and photovoltaic power plant in the context of the sustainable development of energy systems. The objects of the research were two actual technical facilities—a 2 MW wind power plant and a 2 MW photovoltaic power plant, both located in Poland. The analysis of their life cycle was carried out on the basis of the LCA (life-cycle assessment) method, using the ReCiPe 2016 calculation procedure. The impact of the examined renewable energy systems was assessed under 22 impact categories and 3 areas of influence (i.e., human health, ecosystems, and resources), and an analysis was conducted for the results obtained as part of three compartments (i.e., air, water, and soil). The life cycle of the wind power plant was distinguished by a higher total potential negative environmental impact compared to the life cycle of the photovoltaic power plant. The highest levels of potential harmful impacts on the environment in both life cycles were recorded for areas of influence associated with negative impacts on human health. Emissions to the atmosphere accounted for over 90% of all emissions in the lifetimes of both the wind and the photovoltaic power plants. On the basis of the obtained results, guidelines were proposed for pro-ecological changes in the life cycle of materials and elements of the considered technical facilities for renewable energy sources, aimed at better implementation of the main assumptions of contemporary sustainable development (especially in the field of environmental protection)

    Application of Iron Nanoparticle-Based Materials in the Food Industry

    No full text
    Due to their different properties compared to other materials, nanoparticles of iron and iron oxides are increasingly used in the food industry. Food technologists have especially paid attention to their ease of separation by magnetic fields and biocompatibility. Unfortunately, the consumption of increasing amounts of nanoparticles has raised concerns about their biotoxicity. Hence, knowledge about the applicability of iron nanoparticle-based materials in the food industry is needed not only among scientists, but also among all individuals who are involved in food production. The first part of this article describes typical methods of obtaining iron nanoparticles using chemical synthesis and so-called green chemistry. The second part of this article describes the use of iron nanoparticles and iron nanoparticle-based materials for active packaging, including the ability to eliminate oxygen and antimicrobial activity. Then, the possibilities of using the magnetic properties of iron nano-oxides for enzyme immobilization, food analysis, protein purification and mycotoxin and histamine removal from food are described. Other described applications of materials based on iron nanoparticles are the production of artificial enzymes, process control, food fortification and preserving food in a supercooled state. The third part of the article analyzes the biocompatibility of iron nanoparticles, their impact on the human body and the safety of their use
    corecore