5 research outputs found

    Interfaces in partly compatible polymer mixtures: A Monte Carlo simulation approach

    Full text link
    The structure of polymer coils near interfaces between coexisting phases of symmetrical polymer mixtures (AB) is discussed, as well as the structure of symmetric diblock copolymers of the same chain length N adsorbed at the interface. The problem is studied by Monte Carlo simulations of the bond fluctuation model on the simple cubic lattice, using massively parallel computers (CRAY T3D). While homopolymer coils in the strong segregation limit are oriented parallel to the interface, the diblocks form ``dumbbells'' oriented perpendicular to the interface. However, in the dilute case (``mushroom regime'' rather than ``brush regime''), the diblocks are only weakly stretched. Distribution functions for monomers at the chain ends and in the center of the polymer are obtained, and a comparison to the self consistent field theory is made.Comment: to appear in Physica

    "Intrinsic" profiles and capillary waves at interfaces between coexisting phases in polymer blends

    No full text
    Lateral fluctuations in the local position of the center of the interface between coexisting phases in unmixed polymer blends lead to a broadening of interfacial widths; comparing self--consistent field predictions for the "intrinsic " profile to simulations (or experiments) this "capillary wave" broadening needs consideration. This problem is studied by extensive Monte Carlo simulations of the bond fluctuation model for symmetrical polymer mixtures, both for free interfaces (between bulk phases) and for confined interfaces (in thin films between parallel walls). While the capillary wave predictions at large length scales are confirmed, extraction of the "intrinsic" profile remains a problem. Related experiments are also briefly discussed. I. INTRODUCTION Many polymer mixtures are partially or completely incompatible at conditions of interest, and blending them yields materials that are heterogeneous on a mesoscopic scale: interfaces between coexisting unmixed regions then have a profo..

    Fever and hypothermia represent two populations of sepsis patients and are associated with outside temperature

    No full text
    Background!#!Fever and hypothermia have been observed in septic patients. Their influence on prognosis is subject to ongoing debates.!##!Methods!#!We did a secondary analysis of a large clinical dataset from a quality improvement trial. A binary logistic regression model was calculated to assess the association of the thermal response with outcome and a multinomial regression model to assess factors associated with fever or hypothermia.!##!Results!#!With 6542 analyzable cases we observed a bimodal temperature response characterized by fever or hypothermia, normothermia was rare. Hypothermia and high fever were both associated with higher lactate values. Hypothermia was associated with higher mortality, but this association was reduced after adjustment for other risk factors. Age, community-acquired sepsis, lower BMI and lower outside temperatures were associated with hypothermia while bacteremia and higher procalcitonin values were associated with high fever.!##!Conclusions!#!Septic patients show either a hypothermic or a fever response. Whether hypothermia is a maladaptive response, as indicated by the higher mortality in hypothermic patients, or an adaptive response in patients with limited metabolic reserves under colder environmental conditions, remains an open question. Trial registration The original trial whose dataset was analyzed was registered at ClinicalTrials.gov (NCT01187134) on August 23, 2010, the first patient was included on July 1, 2011
    corecore