79 research outputs found

    Stroboscopic prethermalization in weakly interacting periodically driven systems

    Full text link
    Time-periodic driving provides a promising route to engineer non-trivial states in quantum many-body systems. However, while it has been shown that the dynamics of integrable systems can synchronize with the driving into a non-trivial periodic motion, generic non-integrable systems are expected to heat up until they display a trivial infinite-temperature behavior. In this paper we show that a quasi-periodic time evolution over many periods can also emerge in systems with weak integrability breaking, with a clear separation of the timescales for synchronization and the eventual approach of the infinite-temperature state. This behavior is the analogue of prethermalization in quenched systems. The synchronized state can be described using a macroscopic number of approximate constants of motion. We corroborate these findings with numerical simulations for the driven Hubbard model.Comment: 8 pages, 2 figures, published versio

    Dynamical phase transition in correlated fermionic lattice systems

    Full text link
    We use non-equilibrium dynamical mean-field theory to demonstrate the existence of a critical interaction in the real-time dynamics of the Hubbard model after an interaction quench. The critical point is characterized by fast thermalization and separates weak-coupling and strong-coupling regimes in which the relaxation is delayed due to prethermalization on intermediate timescales. This dynamical phase transition should be observable in experiments on trapped fermionic atoms.Comment: 4 pages, 3 figure

    Emergence of a common energy scale close to the orbital-selective Mott transition

    Full text link
    We calculate the spectra and spin susceptibilities of a Hubbard model with two bands having different bandwidths but the same on-site interaction, with parameters close to the orbital-selective Mott transition, using dynamical mean-field theory. If the Hund's rule coupling is sufficiently strong, one common energy scale emerges which characterizes both the location of kinks in the self-energy and extrema of the diagonal spin susceptibilities. A physical explanation of this energy scale is derived from a Kondo-type model. We infer that for multi-band systems local spin dynamics rather than spectral functions determine the location of kinks in the effective band structure.Comment: 5 pages, 5 figure

    Nonthermal steady states after an interaction quench in the Falicov-Kimball model

    Full text link
    We present the exact solution of the Falicov-Kimball model after a sudden change of its interaction parameter using non-equilibrium dynamical mean-field theory. For different interaction quenches between the homogeneous metallic and insulating phases the system relaxes to a non-thermal steady state on time scales on the order of hbar/bandwidth, showing collapse and revival with an approximate period of h/interaction if the interaction is large. We discuss the reasons for this behavior and provide a statistical description of the final steady state by means of generalized Gibbs ensembles.Comment: 4 pages, 2 figures; published versio

    Bound states in the one-dimensional two-particle Hubbard model with an impurity

    Full text link
    We investigate bound states in the one-dimensional two-particle Bose-Hubbard model with an attractive (V>0V> 0) impurity potential. This is a one-dimensional, discrete analogy of the hydrogen negative ion H−^- problem. There are several different types of bound states in this system, each of which appears in a specific region. For given VV, there exists a (positive) critical value Uc1U_{c1} of UU, below which the ground state is a bound state. Interestingly, close to the critical value (U≲Uc1U\lesssim U_{c1}), the ground state can be described by the Chandrasekhar-type variational wave function, which was initially proposed for H−^-. For U>Uc1U>U_{c1}, the ground state is no longer a bound state. However, there exists a second (larger) critical value Uc2U_{c2} of UU, above which a molecule-type bound state is established and stabilized by the repulsion. We have also tried to solve for the eigenstates of the model using the Bethe ansatz. The model possesses a global \Zz_2-symmetry (parity) which allows classification of all eigenstates into even and odd ones. It is found that all states with odd-parity have the Bethe form, but none of the states in the even-parity sector. This allows us to identify analytically two odd-parity bound states, which appear in the parameter regions −2V<U<−V-2V<U<-V and −V<U<0-V<U<0, respectively. Remarkably, the latter one can be \textit{embedded} in the continuum spectrum with appropriate parameters. Moreover, in part of these regions, there exists an even-parity bound state accompanying the corresponding odd-parity bound state with almost the same energy.Comment: 18 pages, 18 figure

    Integrability and weak diffraction in a two-particle Bose-Hubbard model

    Full text link
    A recently introduced one-dimensional two-particle Bose-Hubbard model with a single impurity is studied on finite lattices. The model possesses a discrete reflection symmetry and we demonstrate that all eigenstates odd under this symmetry can be obtained with a generalized Bethe ansatz if periodic boundary conditions are imposed. Furthermore, we provide numerical evidence that this holds true for open boundary conditions as well. The model exhibits backscattering at the impurity site -- which usually destroys integrability -- yet there exists an integrable subspace. We investigate the non-integrable even sector numerically and find a class of states which have almost the Bethe ansatz form. These weakly diffractive states correspond to a weak violation of the non-local Yang-Baxter relation which is satisfied in the odd sector. We bring up a method based on the Prony algorithm to check whether a numerically obtained wave function is in the Bethe form or not, and if so, to extract parameters from it. This technique is applicable to a wide variety of other lattice models.Comment: 13.5 pages, 11 figure
    • …
    corecore