14,928 research outputs found
Structured Prediction of Sequences and Trees using Infinite Contexts
Linguistic structures exhibit a rich array of global phenomena, however
commonly used Markov models are unable to adequately describe these phenomena
due to their strong locality assumptions. We propose a novel hierarchical model
for structured prediction over sequences and trees which exploits global
context by conditioning each generation decision on an unbounded context of
prior decisions. This builds on the success of Markov models but without
imposing a fixed bound in order to better represent global phenomena. To
facilitate learning of this large and unbounded model, we use a hierarchical
Pitman-Yor process prior which provides a recursive form of smoothing. We
propose prediction algorithms based on A* and Markov Chain Monte Carlo
sampling. Empirical results demonstrate the potential of our model compared to
baseline finite-context Markov models on part-of-speech tagging and syntactic
parsing
Reexamining the Impact of Employee Relocation Assistance on Housing Prices
In this paper, we reexamine the issue of whether corporate relocation assistance programs for transferred employees significantly affect sale prices of single-family homes. We estimate a hedonic price equation that includes physical housing characteristics, location factors, occupancy status, and type of seller for a sample of 2,441 transactions. Seller types include (a) transferred employees who were given direct relocation assistance, (b) transferred employees who were not given direct relocation assistance, and (c) sellers who were not facing an employment transfer. After controlling for vacancy and tenant occupancy, we find that houses sold by transferred employees who receive direct relocation assistance exhibit no significant price differential, but that houses sold by transferred employees who do not receive direct relocation assistance sell at a discount of approximately 3%.
Effective g-factor in Majorana Wires
We use the effective g-factor of subgap states, g*, in hybrid InAs nanowires
with an epitaxial Al shell to investigate how the superconducting density of
states is distributed between the semiconductor core and the metallic shell. We
find a step-like reduction of g* and improved hard gap with reduced carrier
density in the nanowire, controlled by gate voltage. These observations are
relevant for Majorana devices, which require tunable carrier density and g*
exceeding the g-factor of the proximitizing superconductor. Additionally, we
observe the closing and reopening of a gap in the subgap spectrum coincident
with the appearance of a zero-bias conductance peak
Decay of nuclear hyperpolarization in silicon microparticles
We investigate the low-field relaxation of nuclear hyperpolarization in
undoped and highly doped silicon microparticles at room temperature following
removal from high field. For nominally undoped particles, two relaxation time
scales are identified for ambient fields above 0.2 mT. The slower, T_1s, is
roughly independent of ambient field; the faster, T_1f, decreases with
increasing ambient field. A model in which nuclear spin relaxation occurs at
the particle surface via a two-electron mechanism is shown to be in good
agreement with the experimental data, particularly the field-independence of
T_1s. For boron-doped particles, a single relaxation time scale is observed.
This suggests that for doped particles, mobile carriers and bulk ionized
acceptor sites, rather than paramagnetic surface states, are the dominant
relaxation mechanisms. Relaxation times for the undoped particles are not
affected by tumbling in a liquid solution.Comment: related papers at http://marcuslab.harvard.ed
Application of High-precision Timing Systems to Distributed Survey Systems
In any hydrographic survey system that consists of more than one computer, one of the most difficult integration problems is to ensure that all components maintain a coherent sense of time. Since virtually all modern survey systems are of this type, timekeeping and synchronized timestamping of data as it is created is of significant concern. This paper describes a method for resolving this problem based on the IEEE 1588 Precise Time Protocol (PTP) implemented by hardware devices, layered with some custom software called the Software Grandmaster (SWGM) algorithm. This combination of hardware and software maintains a coherent sense of time between multiple ethernet-connected computers, on the order of 100 ns (rms) in the best case, of the timebase established by the local GPS-receiver clock. We illustrate the performance of this techniques in a practical survey system using a Reson 7P sonar processor connected to a Reson 7125 Multibeam Echosounder (MBES), integrated with an Applanix POS/MV 320 V4 and a conventional data capture computer. Using the timing capabilities of the PTP hardware implementations, we show that the timepieces achieve mean (hardware based) synchronization and timestamping within 100-150 ns (rms), and that the data created at the Reson 7P without hardware timestamps has a latency variability of 28 µs (rms) due to software constraints within the capture system. This compares to 288 ms (rms) using Reson’s standard hybrid hardware/software solution, and 13.6 ms (rms) using a conventional single-oscillator timestamping model
Tunneling Spectroscopy of Quasiparticle Bound States in a Spinful Josephson Junction
The spectrum of a segment of InAs nanowire, confined between two
superconducting leads, was measured as function of gate voltage and
superconducting phase difference using a third normal-metal tunnel probe.
Sub-gap resonances for odd electron occupancy---interpreted as bound states
involving a confined electron and a quasiparticle from the superconducting
leads, reminiscent of Yu-Shiba-Rusinov states---evolve into Kondo-related
resonances at higher magnetic fields. An additional zero bias peak of unknown
origin is observed to coexist with the quasiparticle bound states.Comment: Supplementary information available here:
https://dl.dropbox.com/u/1742676/Chang_Sup.pd
A Semiconductor Nanowire-Based Superconducting Qubit
We introduce a hybrid qubit based on a semiconductor nanowire with an
epitaxially grown superconductor layer. Josephson energy of the transmon-like
device ("gatemon") is controlled by an electrostatic gate that depletes
carriers in a semiconducting weak link region. Strong coupling to an on-chip
microwave cavity and coherent qubit control via gate voltage pulses is
demonstrated, yielding reasonably long relaxation times (0.8 {\mu}s) and
dephasing times (1 {\mu}s), exceeding gate operation times by two orders of
magnitude, in these first-generation devices. Because qubit control relies on
voltages rather than fluxes, dissipation in resistive control lines is reduced,
screening reduces crosstalk, and the absence of flux control allows operation
in a magnetic field, relevant for topological quantum information
Hole Spin Coherence in a Ge/Si Heterostructure Nanowire
Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si
nanowire double quantum dot using a fast pulsed-gate method and dispersive
readout. An inhomogeneous dephasing time
exceeds corresponding measurements in III-V semiconductors by more than an
order of magnitude, as expected for predominately nuclear-spin-free materials.
Dephasing is observed to be exponential in time, indicating the presence of a
broadband noise source, rather than Gaussian, previously seen in systems with
nuclear-spin-dominated dephasing.Comment: 15 pages, 4 figure
- …