1,370 research outputs found

    Jumping Through Loops: On Soft Terms from Large Volume Compactifications

    Full text link
    We subject the phenomenologically successful large volume scenario of hep-th/0502058 to a first consistency check in string theory. In particular, we consider whether the expansion of the string effective action is consistent in the presence of D-branes and O-planes. Due to the no-scale structure at tree-level, the scenario is surprisingly robust. We compute the modification of soft supersymmetry breaking terms, and find only subleading corrections. We also comment that for large-volume limits of toroidal orientifolds and fibered Calabi-Yau manifolds the corrections can be more important, and we discuss further checks that need to be performed.Comment: 57 page

    Dante's Inferno

    Full text link
    We present a simple two-field model of inflation and show how to embed it in string theory as a straightforward generalization of axion monodromy models. Phenomenologically, the predictions are equivalent to those of chaotic inflation, and in particular include observably large tensor modes. The whole high-scale large-field inflationary dynamics takes place within a region of field space that is parametrically subplanckian in diameter, hence improving our ability to control quantum corrections and achieve slow-roll inflation

    Higgs diphoton rate enhancement from supersymmetric physics beyond the MSSM

    Full text link
    We show that supersymmetric "new physics" beyond the MSSM can naturally accommodate a Higgs mass near 126 GeV and enhance the signal rate in the Higgs to diphoton channel, while the signal rates in all the other Higgs decay channels coincide with Standard Model expectations, except possibly the Higgs to Z-photon channel. The "new physics" that corrects the relevant Higgs couplings can be captured by two supersymmetric effective operators. We provide a simple example of an underlying model in which these operators are simultaneously generated. The scale of "new physics" that generates these operators can be around 5 TeV or larger, and outside the reach of the LHC.Comment: 24 pages, 4 figure
    corecore