9,588 research outputs found
Ghosts of Milky Way's past: the globular cluster ESO 37-1 (E 3)
Context. In the Milky Way, most globular clusters are highly conspicuous
objects that were found centuries ago. However, a few dozen of them are faint,
sparsely populated systems that were identified largely during the second half
of the past century. One of the faintest is ESO 37-1 (E 3) and as such it
remains poorly studied, with no spectroscopic observations published so far,
although it was discovered in 1976.
Aims. We investigate the globular cluster E 3 in an attempt to better
constrain its fundamental parameters. Spectroscopy of stars in the field of E 3
is shown here for the first time.
Methods. Deep, precise VI CCD photometry of E 3 down to V=26 mag is presented
and analysed. Low-resolution, medium signal-to-noise ratio spectra of nine
candidate members are studied to derive radial velocity and metallicity. Proper
motions from the UCAC4 catalogue are used to explore the kinematics of the
bright members of E 3.
Results. Isochrone fitting indicates that E 3 is probably very old, with an
age of about 13 Gyr; its distance from the Sun is nearly 10 kpc. It is also
somewhat metal rich with [Fe/H]=-0.7. Regarding its kinematics, our tentative
estimate for the proper motions is (-7.0+/-0.8, 3.5+/-0.3) mas/yr (or a
tangential velocity of 382+/-79 km/s) and for the radial velocity is 45+/-5
km/s, in the solar rest frame.
Conclusions. E 3 is one of the most intriguing globular clusters in the
Galaxy. Having an old age and being metal rich is clearly a peculiar
combination, only seen in a handful of objects like the far more conspicuous
NGC 104 (47 Tucanae). In addition, its low luminosity and sparse population
make it a unique template for the study of the final evolutionary phases in the
life of a star cluster. Unfortunately, E 3 is among the most elusive and
challenging known globular clusters because field contamination severely
hampers spectroscopic studies.Comment: 7 pages, 6+1 figures, 2 tables. Accepted for publication in Astronomy
and Astrophysics. Minor change
New insight on pseudospin doublets in nuclei
The relevance of the pseudospin symmetry in nuclei is considered. New insight
is obtained from looking at the continuous transition from a model satisfying
the spin symmetry to another one satisfying the pseudospin symmetry. This study
suggests that there are models allowing no missing single-particle states in
this transition, contrary to what is usually advocated. It rather points out to
an association of pseudospin partners different from the one usually assumed,
together with a strong violation of the corresponding symmetry. A comparison
with results obtained from some relativistic approaches is made.Comment: 27 pages, 18 figure
Predictions for Triple Stars with and without a Pulsar in Star Clusters
Though about 80 pulsar binaries have been detected in globular clusters so
far, no pulsar has been found in a triple system in which all three objects are
of comparable mass. Here we present predictions for the abundance of such
triple systems, and for the most likely characteristics of these systems. Our
predictions are based on an extensive set of more than 500 direct simulations
of star clusters with primordial binaries, and a number of additional runs
containing primordial triples. Our simulations employ a number N_{tot} of equal
mass stars from N_{tot}=512 to N_{tot}=19661 and a primordial binary fraction
from 0-50%. In addition, we validate our results against simulations with
N=19661 that include a mass spectrum with a turn-off mass at 0.8 M_{sun},
appropriate to describe the old stellar populations of galactic globular
clusters. Based on our simulations, we expect that typical triple abundances in
the core of a dense cluster are two orders of magnitude lower than the binary
abundances, which in itself already suggests that we don't have to wait too
long for the first comparable-mass triple with a pulsar to be detected.Comment: 11 pages, minor changes to match MNRAS accepted versio
Black Holes and Large Order Quantum Geometry
We study five-dimensional black holes obtained by compactifying M theory on
Calabi-Yau threefolds. Recent progress in solving topological string theory on
compact, one-parameter models allows us to test numerically various conjectures
about these black holes. We give convincing evidence that a microscopic
description based on Gopakumar-Vafa invariants accounts correctly for their
macroscopic entropy, and we check that highly nontrivial cancellations -which
seem necessary to resolve the so-called entropy enigma in the OSV conjecture-
do in fact occur. We also study analytically small 5d black holes obtained by
wrapping M2 branes in the fiber of K3 fibrations. By using heterotic/type II
duality we obtain exact formulae for the microscopic degeneracies in various
geometries, and we compute their asymptotic expansion for large charges.Comment: 42 pages, 20 eps figures, small correction
Practical quantum key distribution: On the security evaluation with inefficient single-photon detectors
Quantum Key Distribution with the BB84 protocol has been shown to be
unconditionally secure even using weak coherent pulses instead of single-photon
signals. The distances that can be covered by these methods are limited due to
the loss in the quantum channel (e.g. loss in the optical fiber) and in the
single-photon counters of the receivers. One can argue that the loss in the
detectors cannot be changed by an eavesdropper in order to increase the covered
distance. Here we show that the security analysis of this scenario is not as
easy as is commonly assumed, since already two-photon processes allow
eavesdropping strategies that outperform the known photon-number splitting
attack. For this reason there is, so far, no satisfactory security analysis
available in the framework of individual attacks.Comment: 11 pages, 6 figures; Abstract and introduction extended, Appendix
added, references update
Intercept-resend attacks in the Bennett-Brassard 1984 quantum key distribution protocol with weak coherent pulses
Unconditional security proofs of the Bennett-Brassard protocol of quantum key
distribution have been obtained recently. These proofs cover also practical
implementations that utilize weak coherent pulses in the four signal
polarizations. Proven secure rates leave open the possibility that new proofs
or new public discussion protocols obtain larger rates over increased distance.
In this paper we investigate limits to error rate and signal losses that can be
tolerated by future protocols and proofs.Comment: 11 pages, 3 figures. Version accepted for publication in Phys. Rev.
- …