39 research outputs found

    Reduced basal ganglia ÎĽ-opioid receptor availability in trigeminal neuropathic pain: A pilot study

    Full text link
    Abstract Background Although neuroimaging techniques have provided insights into the function of brain regions involved in Trigeminal Neuropathic Pain (TNP) in humans, there is little understanding of the molecular mechanisms affected during the course of this disorder. Understanding these processes is crucial to determine the systems involved in the development and persistence of TNP. Findings In this study, we examined the regional ÎĽ-opioid receptor (ÎĽOR) availability in vivo (non-displaceable binding potential BPND) of TNP patients with positron emission tomography (PET) using the ÎĽOR selective radioligand [11C]carfentanil. Four TNP patients and eight gender and age-matched healthy controls were examined with PET. Patients with TNP showed reduced ÎĽOR BPND in the left nucleus accumbens (NAc), an area known to be involved in pain modulation and reward/aversive behaviors. In addition, the ÎĽOR BPND in the NAc was negatively correlated with the McGill sensory and total pain ratings in the TNP patients. Conclusions Our findings give preliminary evidence that the clinical pain in TNP patients can be related to alterations in the endogenous ÎĽ-opioid system, rather than only to the peripheral pathology. The decreased availability of ÎĽORs found in TNP patients, and its inverse relationship to clinical pain levels, provide insights into the central mechanisms related to this condition. The results also expand our understanding about the impact of chronic pain on the limbic system.http://deepblue.lib.umich.edu/bitstream/2027.42/112555/1/12990_2012_Article_533.pd

    Short-Term Functional and Morphological Changes in the Primary Cultures of Trigeminal Ganglion Cells

    Get PDF
    Several studies have proved that glial cells, as well as neurons, play a role in pain pathophysiology. Most of these studies have focused on the contribution of central glial cells (e.g., microglia and astrocytes) to neuropathic pain. Likewise, some works have suggested that peripheral glial cells, particularly satellite glial cells (SGCs), and the crosstalk between these cells and the sensory neurons located in the peripheral ganglia, play a role in the phenomenon that leads to pain. Nonetheless, the study of SGCs may be challenging, as the validity of studying those cells in vitro is still controversial. In this study, a research protocol was developed to examine the potential use of primary mixed neuronal–glia cell cultures obtained from the trigeminal ganglion cells (TGCs) of neonate mice (P10–P12). Primary cultures were established and analyzed at 4 h, 24 h, and 48 h. To this purpose, phase contrast microscopy, immunocytochemistry with antibodies against anti-βIII-tubulin and Sk3, scanning electron microscopy, and time-lapse photography were used. The results indicated the presence of morphological changes in the cultured SGCs obtained from the TGCs. The SGCs exhibited a close relationship with neurons. They presented a round shape in the first 4 h, and a more fusiform shape at 24 h and 48 h of culture. On the other hand, neurons changed from a round shape to a more ramified shape from 4 h to 48 h. Intriguingly, the expression of SK3, a marker of the SGCs, was high in all samples at 4 h, with some cells double-staining for SK3 and βIII-tubulin. The expression of SK3 decreased at 24 h and increased again at 48 h in vitro. These results confirm the high plasticity that the SGCs may acquire in vitro. In this scenario, the authors hypothesize that, at 4 h, a group of the analyzed cells remained undifferentiated and, therefore, were double-stained for SK3 and βIII-tubulin. After 24 h, these cells started to differentiate into SCGs, which was clearer at 48 h in the culture. Mixed neuronal–glial TGC cultures might be implemented as a platform to study the plasticity and crosstalk between primary sensory neurons and SGCs, as well as its implications in the development of chronic orofacial pain

    State-of-art neuroanatomical target analysis of high-definition and conventional tDCS montages used for migraine and pain control

    Get PDF
    Although transcranial direct current stimulation (tDCS) studies promise to modulate cortical regions associated with pain, the electric current produced usually spreads beyond the area of the electrodes’ placement. Using a forward-model analysis, this study compared the neuroanatomic location and strength of the predicted electric current peaks, at cortical and subcortical levels, induced by conventional and High-Definition-tDCS (HD-tDCS) montages developed for migraine and other chronic pain disorders. The electrodes were positioned in accordance with the 10-20 or 10-10 electroencephalogram (EEG) landmarks: motor cortex-supraorbital (M1-SO, anode and cathode over C3 and Fp2, respectively), dorsolateral prefrontal cortex bilateral (DLPFC, anode over F3, cathode over F4), vertex-occipital cortex (anode over Cz and cathode over Oz), HD-tDCS 4x1 (one anode on C3, and four cathodes over Cz, F3, T7, and P3) and HD-tDCS 2x2 (two anodes over C3/C5 and two cathodes over FC3/FC5). M1-SO produced a large current flow in the prefrontal cortex (PFC). Peaks of current flow also occurred in deeper brain structures, such as the cingulate cortex, insula, thalamus and brainstem. The same structures received significant amount of current with Cz-Oz and DLPFC tDCS. However, there were differences in the current flow to outer cortical regions. The visual cortex, cingulate and thalamus received the majority of the current flow with the Cz-Oz, while the anterior parts of the superior and middle frontal gyri displayed an intense amount of current with DLPFC montage. HD-tDCS montages enhanced the focality, producing peaks of current in subcortical areas at negligible levels. This study provides novel information regarding the neuroanatomical distribution and strength of the electric current using several tDCS montages applied for migraine and pain control. Such information may help clinicians and researchers in deciding the most appropriate tDCS montage to treat each pain disorder

    Reward Circuitry Plasticity in Pain Perception and Modulation

    No full text
    Although pain is a widely known phenomenon and an important clinical symptom that occurs in numerous diseases, its mechanisms are still barely understood. Owing to the scarce information concerning its pathophysiology, particularly what is involved in the transition from an acute state to a chronic condition, pain treatment is frequently unsatisfactory, therefore contributing to the amplification of the chronic pain burden. In fact, pain is an extremely complex experience that demands the recruitment of an intricate set of central nervous system components. This includes cortical and subcortical areas involved in interpretation of the general characteristics of noxious stimuli. It also comprises neural circuits that process the motivational-affective dimension of pain. Hence, the reward circuitry represents a vital element for pain experience and modulation. This review article focuses on the interpretation of the extensive data available connecting the major components of the reward circuitry to pain suffering, including the nucleus accumbens, ventral tegmental area, and the medial prefrontal cortex; with especial attention dedicated to the evaluation of neuroplastic changes affecting these structures found in chronic pain syndromes, such as migraine, trigeminal neuropathic pain, chronic back pain, and fibromyalgia

    Potential mechanisms supporting the value of motor cortex stimulation to treat chronic pain syndromes

    Get PDF
    Throughout the first years of the twenty-first century, neurotechnologies such as motor cortex stimulation (MCS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) have attracted scientific attention and been considered as potential tools to centrally modulate chronic pain, especially for those conditions more difficult to manage and refractory to all types of available pharmacological therapies. Interestingly, although the role of the motor cortex in pain has not been fully clarified, it is one of the cortical areas most commonly targeted by invasive and non-invasive neuromodulation technologies. Recent studies have provided significant advances concerning the establishment of the clinical effectiveness of primary motor cortex stimulation to treat different chronic pain syndromes. Concurrently, the neuromechanisms related to each method of primary motor cortex (M1) modulation have been unveiled. In this respect, the most consistent scientific evidence originates from MCS studies, which indicate the activation of top-down controls driven by M1 stimulation. This concept has also been applied to explain M1-TMS mechanisms. Nevertheless, activation of remote areas in the brain, including cortical and subcortical structures, has been reported with both invasive and non-invasive methods and the participation of major neurotransmitters (e.g. glutamate, GABA and serotonin) as well as the release of endogenous opioids has been demonstrated. In this critical review, the putative mechanisms underlying the use of motor cortex stimulation to provide relief from chronic migraine and other types of chronic pain are discussed. Emphasis is placed on the most recent scientific evidence obtained from chronic pain research studies involving MCS and non-invasive neuromodulation methods (e.g. tDCS and TMS), which are analyzed comparatively

    Changes in the vibration sensitivity and pressure pain thresholds in patients with burning mouth syndrome

    No full text
    <div><p>Objective</p><p>To investigate the presence of changes in vibration detection and pressure pain threshold in patients with burning-mouth syndrome (BMS).</p><p>Design of the study</p><p>Case-control study. The sample was composed of 30 volunteers, 15 with BMS and 15 in the control group. The pressure-pain threshold (PPT) and vibration-detection threshold (VDT) were examined. The clinical evaluation was complemented with the McGill Pain Questionnaire (MPQ), Douleur Neuropathique 4 (DN4) and Beck Depression and Anxiety Inventories (BDI and BAI, respectively).</p><p>Results</p><p>BMS subjects showed a statistically significant higher PPT in the tongue (p = 0.002), right (p = 0.001) and left (p = 0.004) face, and a significant reduction of the VDT in the tongue (p = 0.013) and right face (p = 0.030). Significant differences were also found when comparing the PPT and the VDT of distinct anatomical areas. However, a significant interaction (group Ă— location) was only for the PPT. BMS subjects also showed significantly higher levels of depression (p = 0.01), as measured by the BDI, compared to controls; and a significant inverse correlation between the VDT in the left face and anxiety levels was detected.</p><p>Conclusions</p><p>The study of somatosensory changes in BMS and its correlations with the clinical features as well as the levels of anxiety and depression expands current understanding of the neuropathic origin and the possible contribution of psychogenic factors related to this disease.</p></div

    Pain variables in the group of BMS patients; N = number of participants, S.D. = standard deviation, Min. = minimum values, Max. = maximum values.

    No full text
    <p>Pain variables in the group of BMS patients; N = number of participants, S.D. = standard deviation, Min. = minimum values, Max. = maximum values.</p

    Scatter plot displaying direct correlation between McGill PRI (T) and DN4 scores.

    No full text
    <p>For visualization purposes, the line illustrates the trend of the relationship between the two variables.</p
    corecore