27 research outputs found

    Herpes Simplex Virus Type 1-Derived Recombinant and Amplicon Vectors

    No full text
    Herpes simplex virus type 1 (HSV-1) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153 kbp double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes (1) the two approaches most commonly used to prepare recombinant vectors through homologous recombination, either in eukaryotic cells or in bacteria, and (2) the two methodologies currently used to generate helper-free amplicon vectors, either using a bacterial artificial chromosome (BAC)-based approach or a Cre/loxP site-specific recombination strategy

    Parenchymal cells critically curtail cytotoxic T-cell responses by inducing Bim-mediated apoptosis

    No full text
    none7Abstract To develop cytolytic effector functions, CD8(+) T lymphocytes need to recognize specific Ag/MHC class I complexes in the context of costimuli on Ag-presenting DC. Thereafter they differentiate into effector and memory CTL able to confer protection against pathogen infection. Using transgenic mice with DC-selective MHC class I expression and DC-specific versus ubiquitous vaccination regimen, we found that DC are sufficient to prime CTL responses. However, Ag recognition on parenchymal non-professional APC negatively affected CD8(+) T-cell responses in mice by inducing expression of the pro-apoptotic bcl2-family member bim in CTL. This unexpected induction of apoptosis in the early phase of effector CTL accumulation lead to suboptimal clonal burst size and diminished long-term memory. Thus, our data demonstrate that effector CTL differentiation and apoptosis are regulated independently. Moreover, Ag distribution on cells other than DC critically reduces CTL responses.mixedGruber A; Cannarile MA; Cheminay C; Ried C; Marconi P; Häcker G; Brocker T.Gruber, A; Cannarile, Ma; Cheminay, C; Ried, C; Marconi, Peggy Carla Raffaella; Häcker, G; Brocker, T

    Systemic immunodominant CD8 responses with an effector-like phenotype are induced by intravaginal immunization with attenuated HSV vectors expressing HIV Tat and mediate protection against HSV infection

    No full text
    Mucosal HSV infection remains a public health issue in developing and developed world. However, an effective vaccine is still missing, partly because of the incomplete knowledge of correlates of protection. In this study we have investigated the kinetics and quality of immunity elicited by an attenuated HSV1 vector expressing the immunomodulatory Tat protein of HIV-1 (HSV1-Tat). Animals were immunized by intravaginal (IVag) or intradermal (ID) route with HSV1-Tat or with a control HSV1 vector expressing the LacZ gene (HSV1-LacZ) and immune responses were characterized in different anatomical districts. IVag immunization with HSV1-Tat enhanced both expansion and memory phases of HSV-specific immunodominant CD8 responses at systemic, but not local, level and induced short- and long-term protection against mucosal challenge. Conversely, ID immunization with HSV1-Tat favored HSV-subdominant CD8 responses, which protected mice only at early time points after immunization. IVag immunization, in particular with HSV1-Tat, compared to ID immunization, induced the differentiation of CD8(+) T lymphocytes into short-lived effector (SLEC) and effector memory (Tem) cells, generating more robust recall responses associated with increased control of virus replication. Notably, systemic SLEC and Tem contributed to generate protective local secondary responses, demonstrating their importance for mucosal control of HSV. Finally, IgG responses were observed mostly in IVag HSV1-Tat immunized animals, although seemed dispensable for protection, which occurred even in few IgG negative mice. Thus, HSV1 vectors expressing Tat induce protective anti-HSV1 immune responses.Mucosal HSV infection remains a public health issue in developing and developed world. However, an effective vaccine is still missing, partly because of the incomplete knowledge of correlates of protection. In this study we have investigated the kinetics and quality of immunity elicited by an attenuated HSV1 vector expressing the immunomodulatory Tat protein of HIV-1 (HSV1-Tat). Animals were immunized by intravaginal (IVag) or intradermal (ID) route with HSV1-Tat or with a control HSV1 vector expressing the LacZ gene (HSV1-LacZ) and immune responses were characterized in different anatomical districts.IVag immunization with HSV1-Tat enhanced both expansion and memory phases of HSV-specific immunodominant CD8 responses at systemic, but not local, level and induced short- and long-term protection against mucosal challenge. Conversely, ID immunization with HSV1-Tat favored HSV-subdominant CD8 responses, which protected mice only at early time points after immunization.IVag immunization, in particular with HSV1-Tat, compared to ID immunization, induced the differentiation of CD8(+) T lymphocytes into short-lived effector (SLEC) and effector memory (Tern) cells, generating more robust recall responses associated with increased control of virus replication. Notably, systemic SLEC and Tem contributed to generate protective local secondary responses, demonstrating their importance for mucosal control of HSV. Finally, IgG responses were observed mostly in IVag HSV1-Tat immunized animals, although seemed dispensable for protection, which occurred even in few IgG negative mice. Thus, HSV1 vectors expressing Tat induce protective anti-HSV1 immune responses. (C) 2016 Elsevier Ltd. All rights reserved

    A direct gene transfer strategy via brain internal capsule reverses the biochemical defect in Tay-Sachs disease

    No full text
    Therapy for neurodegenerative lysosomal Tay-Sachs (TS) disease requires active hexosaminidase (Hex) A production in the central nervous system and an efficient therapeutic approach that can act faster than human disease progression. We combined the efficacy of a non-replicating Herpes simplex vector encoding for the Hex A alpha-subunit (HSV-T0alphaHex) and the anatomic structure of the brain internal capsule to distribute the missing enzyme optimally. With this gene transfer strategy, for the first time, we re-established the Hex A activity and totally removed the GM2 ganglioside storage in both injected and controlateral hemispheres, in the cerebellum and spinal cord of TS animal model in the span of one month's treatment. In our studies, no adverse effects were observed due to the viral vector, injection site or gene expression and on the basis of these results, we feel confident that the same approach could be applied to similar diseases involving an enzyme defect

    Chapter 8: Gene-transfer Tool: Herpes Simplex Virus Vectors

    No full text
    none10---mixedS. Laquerre; W.F. Goins; S. Moriuchi; T.J. Oligino; D.M. Krisky; P. Marconi; M.K Soares; J.B. Cohen; J.C. Glorioso; and D.J. FinkS., Laquerre; W. F., Goins; S., Moriuchi; T. J., Oligino; D. M., Krisky; Marconi, Peggy Carla Raffaella; M. K., Soares; J. B., Cohen; J. C., Glorioso; D. J., Fin

    Characterization of herpes simplex virus 1 strains as platforms for the development of oncolytic viruses against liver cancer

    No full text
    Abstract BACKGROUND: Diverse oncolytic viruses (OV) are being designed for the treatment of cancer. The characteristics of the parental virus strains may influence the properties of these agents. AIMS: To characterize two herpes simplex virus 1 strains (HSV-1 17syn(+) and HFEM) as platforms for virotherapy against liver cancer. METHODS: The luciferase reporter gene was introduced in the intergenic region 20 locus of both HSV-1 strains, giving rise to the Cgal-Luc and H6-Luc viruses. Their properties were studied in hepatocellular carcinoma (HCC) cells in vitro. Biodistribution was monitored by bioluminescence imaging (BLI) in athymic mice and immune-competent Bab/c mice. Immunogenicity was studied by MHC-tetramer staining, in vivo killing assays and determination of specific antibody production. Intratumoural transgene expression and oncolytic effect were studied in HuH-7 xenografts. RESULTS: The H6-Luc virus displayed a syncytial phenotype and showed higher cytolytic effect on some HCC cells. Upon intravenous or intrahepatic injection in mice, both viruses showed a transient transduction of the liver with rapid relocalization of bioluminescence in adrenal glands, spinal cord, uterus and ovaries. No significant differences were observed in the immunogenicity of these viruses. Local intratumoural administration caused progressive increase in transgene expression during the first 5 days and persisted for at least 2 weeks. H6-Luc achieved faster amplification of transgene expression and stronger inhibition of tumour growth than Cgal-Luc, although toxicity of these non-attenuated viruses should be reduced to obtain a therapeutic effect. CONCLUSIONS: The syncytial H6-Luc virus has a strong oncolytic potential on human HCC xenografts and could be the basis for potent OV

    An Attenuated Herpes Simplex Virus Type 1 (HSV1) Encoding the HIV-1 Tat Protein Protects Mice from a Deadly Mucosal HSV1 Challenge

    No full text
    <div><p>Herpes simplex virus types 1 and 2 (HSV1 and HSV2) are common infectious agents in both industrialized and developing countries. They cause recurrent asymptomatic and/or symptomatic infections, and life-threatening diseases and death in newborns and immunocompromised patients. Current treatment for HSV relies on antiviral medications, which can halt the symptomatic diseases but cannot prevent the shedding that occurs in asymptomatic patients or, consequently, the spread of the viruses. Therefore, prevention rather than treatment of HSV infections has long been an area of intense research, but thus far effective anti-HSV vaccines still remain elusive. One of the key hurdles to overcome in anti-HSV vaccine development is the identification and effective use of strategies that promote the emergence of Th1-type immune responses against a wide range of epitopes involved in the control of viral replication. Since the HIV1 Tat protein has several immunomodulatory activities and increases CTL recognition of dominant and subdominant epitopes of heterologous antigens, we generated and assayed a recombinant attenuated replication-competent HSV1 vector containing the <i>tat</i> gene (HSV1-Tat). In this proof-of-concept study we show that immunization with this vector conferred protection in 100% of mice challenged intravaginally with a lethal dose of wild-type HSV1. We demonstrate that the presence of Tat within the recombinant virus increased and broadened Th1-like and CTL responses against HSV-derived T-cell epitopes and elicited in most immunized mice detectable IgG responses. In sharp contrast, a similarly attenuated HSV1 recombinant vector without Tat (HSV1-LacZ), induced low and different T cell responses, no measurable antibody responses and did not protect mice against the wild-type HSV1 challenge. These findings strongly suggest that recombinant HSV1 vectors expressing Tat merit further investigation for their potential to prevent and/or contain HSV1 infection and dissemination.</p></div
    corecore