12 research outputs found

    contribution of individual amino acids within mhc molecule or antigenic peptide to tcr ligand potency

    Get PDF
    The TCR recognition of peptides bound to MHC class II molecules is highly flexible in some T cells. Although progress has been made in understanding the interactions within the trimolecular complex, to what extent the individual components and their amino acid composition contribute to ligand recognition by individual T cells is not completely understood. We investigated how single amino acid residues influence Ag recognition of T cells by combining several experimental approaches. We defined TCR motifs for CD4+ T cells using peptide synthetic combinatorial libraries in the positional scanning format (PS-SCL) and single amino acid-modified peptide analogues. The similarity of the TCR motifs defined by both methods and the identification of stimulatory antigenic peptides by the PS-SCL approach argue for a contribution of each amino acid residue to the overall potency of the antigenic peptide ligand. In some instances, however, motifs are formed by adjacent amino acids, and their combined influence is superimposed on the overall contribution of each amino acid within the peptide epitope. In contrast to the flexibility of the TCR to interact with different peptides, recognition was very sensitive toward modifications of the MHC-restriction element. Exchanges of just one amino acid of the MHC molecule drastically reduced the number of peptides recognized. The results indicate that a specific MHC molecule not only selects certain peptides, but also is crucial for setting an affinity threshold for TCR recognition, which determines the flexibility in peptide recognition for a given TCR

    Heterogeneity in human T-cell response to myelin basic protein peptide (83-89): immunological basis for the development of specific immunotherapies of multiple sclerosis

    No full text
    Dottorato di ricerca in neuroscienze. 9. ciclo. Coordinatore Luigi AmaducciConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Protein tyrosine phosphatase receptor-type C exon 4 gene mutation distribution in an Italian multiple sclerosis population

    No full text
    In this study, we investigate the role of the C --> G mutation in position 77 of exon 4 of the protein tyrosine phosphatase receptor-type C (PTPRC) gene, coding for the CD45 molecule, for the development of multiple sclerosis (MS) in an Italian continental population. The PTPRC mutated genotype has been recently described as associated with MS in three different case-control studies carried out in German MS patients, whereas similar studies performed in the US and Swedish populations failed to demonstrate such an association. The C --> G transition in position 77 was found in a small number of Italian MS patients and in none of the matched group of healthy controls (Fisher exact test, P value = 0.02). This finding suggests a role, in at least a group of patients, for the PTPRC mutation in genetic susceptibility to MS

    Contribution of Individual Amino Acids Within MHC Molecule or Antigenic Peptide to TCR Ligand Potency

    No full text
    The TCR recognition of peptides bound to MHC class II molecules is highly flexible in some T cells. Although progress has been made in understanding the interactions within the trimolecular complex, to what extent the individual components and their amino acid composition contribute to ligand recognition by individual T cells is not completely understood. We investigated how single amino acid residues influence Ag recognition of T cells by combining several experimental approaches. We defined TCR motifs for CD4+ T cells using peptide synthetic combinatorial libraries in the positional scanning format (PS-SCL) and single amino acid-modified peptide analogues. The similarity of the TCR motifs defined by both methods and the identification of stimulatory antigenic peptides by the PS-SCL approach argue for a contribution of each amino acid residue to the overall potency of the antigenic peptide ligand. In some instances, however, motifs are formed by adjacent amino acids, and their combined influence is superimposed on the overall contribution of each amino acid within the peptide epitope. In contrast to the flexibility of the TCR to interact with different peptides, recognition was very sensitive toward modifications of the MHC-restriction element. Exchanges of just one amino acid of the MHC molecule drastically reduced the number of peptides recognized. The results indicate that a specific MHC molecule not only selects certain peptides, but also is crucial for setting an affinity threshold for TCR recognition, which determines the flexibility in peptide recognition for a given TCR
    corecore