10,575 research outputs found

    Economic consequences of personality, knowledge, and intellectual virtues

    Get PDF

    Distributed Decision Making in Combined Vehicle Routing and Break Scheduling

    Get PDF
    The problem of combined vehicle routing and break scheduling comprises three subproblems: clustering of customer requests, routing of vehicles, and break scheduling. In practice, these subproblems are usually solved in the interaction between planners and drivers. We consider the case that the planner performs the clustering and the drivers perform the routing and break scheduling. To analyze this problem, we embed it into the framework of distributed decision making proposed by Schneeweiss (2003). We investigate two different degrees of anticipation of the drivers’ planning behaviour using computational experiments. The results indicate that in this application a more precise anticipation function results in better objective values for both the planner and the drivers

    C to O-O Translation: Beyond the Easy Stuff

    Full text link
    Can we reuse some of the huge code-base developed in C to take advantage of modern programming language features such as type safety, object-orientation, and contracts? This paper presents a source-to-source translation of C code into Eiffel, a modern object-oriented programming language, and the supporting tool C2Eif. The translation is completely automatic and supports the entire C language (ANSI, as well as many GNU C Compiler extensions, through CIL) as used in practice, including its usage of native system libraries and inlined assembly code. Our experiments show that C2Eif can handle C applications and libraries of significant size (such as vim and libgsl), as well as challenging benchmarks such as the GCC torture tests. The produced Eiffel code is functionally equivalent to the original C code, and takes advantage of some of Eiffel's object-oriented features to produce safe and easy-to-debug translations

    Dynamic programming algorithm for the vehicle routing problem with time windows and EC social legislation

    Get PDF
    In practice, apart from the problem of vehicle routing, schedulers also face the problem of nding feasible driver schedules complying with complex restrictions on drivers' driving and working hours. To address this complex interdependent problem of vehicle routing and break scheduling, we propose a dynamic programming approach for the vehicle routing problem with time windows including the EC social legislation on drivers' driving and working hours. Our algorithm includes all optional rules in these legislations, which are generally ignored in the literature. To include the legislation in the dynamic programming algorithm we propose a break scheduling method that does not increase the time-complexity of the algorithm. This is a remarkable eect that generally does not hold for local search methods, which have proved to be very successful in solving less restricted vehicle routing problems. Computational results show that our method finds solutions to benchmark instances with 18% less vehicles and 5% less travel distance than state of the art approaches. Furthermore, they show that including all optional rules of the legislation leads to an additional reduction of 4% in the number of vehicles and of 1.5%\ud regarding the travel distance. Therefore, the optional rules should be exploited in practice

    Geographie und Mathematik

    Get PDF
    • …
    corecore