1,561 research outputs found

    Dielectric function and plasmons of doped three-dimensional Luttinger semimetals

    Full text link
    Luttinger semimetals are three-dimensional electron systems with a parabolic band touching and an effective total spin J=3/2J=3/2. In this paper, we present an analytical theory of dielectric screening of inversion-symmetric Luttinger semimetals with an arbitrary carrier density and conduction-valence effective mass asymmetry. Assuming a spherical approximation for the single-particle Luttinger Hamiltonian, we determine analytically the dielectric screening function in the random phase approximation for arbitrary values of the wave vector and frequency, the latter in the complex plane. We use this analytical expression to calculate the dispersion relation and Landau damping of the collective modes in the charge sector (i.e., plasmons).Comment: 17 pages, 5 figures, published versio

    ABJM θ\theta-Bremsstrahlung at four loops and beyond: non-planar corrections

    Full text link
    We consider the Bremsstrahlung function associated to a 1/6-BPS Wilson loop in ABJM theory, with a cusp in the couplings to scalar fields. We non-trivially extend its recent four-loop computation at weak coupling to include non-planar corrections. We have recently proposed a conjecture relating this object to supersymmetric circular Wilson loops with multiple windings, which can be computed via localization. We find agreement between this proposal and the perturbative computation of the Bremsstrahlung function, including color sub-leading corrections. This supports the conjecture and hints at its validity beyond the planar approximation.Comment: 22 page

    ABJM θ\theta-Bremsstrahlung at four loops and beyond

    Full text link
    In ABJ(M) theory a generalized cusp can be constructed out of the 1/6 BPS Wilson line by introducing an angle φ\varphi in the spacial contour and/or an angle θ\theta in the internal R-symmetry space. The small angles limits of its anomalous dimension are controlled by corresponding Bremsstrahlung functions. In this note we compute the internal space θ\theta-Bremsstrahlung function to four loops at weak coupling in the planar limit. Based on this result, we propose an all order conjecture for the θ\theta-Bremsstrahlung function.Comment: 40 pages; v2: references added, JHEP published extended versio

    Parallel Implementation of Efficient Search Schemes for the Inference of Cancer Progression Models

    Full text link
    The emergence and development of cancer is a consequence of the accumulation over time of genomic mutations involving a specific set of genes, which provides the cancer clones with a functional selective advantage. In this work, we model the order of accumulation of such mutations during the progression, which eventually leads to the disease, by means of probabilistic graphic models, i.e., Bayesian Networks (BNs). We investigate how to perform the task of learning the structure of such BNs, according to experimental evidence, adopting a global optimization meta-heuristics. In particular, in this work we rely on Genetic Algorithms, and to strongly reduce the execution time of the inference -- which can also involve multiple repetitions to collect statistically significant assessments of the data -- we distribute the calculations using both multi-threading and a multi-node architecture. The results show that our approach is characterized by good accuracy and specificity; we also demonstrate its feasibility, thanks to a 84x reduction of the overall execution time with respect to a traditional sequential implementation

    String theory duals of Wilson loops from Higgsing

    Full text link
    For three-dimensional ABJ(M) theories and N=4\mathcal N=4 Chern-Simons-matter quiver theories, we construct two sets of 1/2 BPS Wilson loop operators by applying the Higgsing procedure along independent directions of the moduli space, and choosing different massive modes. For theories whose dual M-theory description is known, we also determine the corresponding spectrum of 1/2 BPS M2-brane solutions. We identify the supercharges in M-theory and field theory, as well as the supercharges preserved by M2-/anti-M2-branes and 1/2 BPS Wilson loops. In particular, in N=4\mathcal N=4 orbifold ABJM theory we find pairs of different 1/2 BPS Wilson loops that preserve exactly the same set of supercharges. In field theory they arise by Higgsing with the choice of either particles or antiparticles, whereas in the dual description they correspond to a pair of M2-/anti-M2-branes localized at different positions in the compact space. This result enlightens the origin of classical Wilson loop degeneracy in these theories, already discussed in arXiv:1506.07614. A discussion on possible scenarios that emerge by comparison with localization results is included.Comment: 52 pages, 4 figures; V2, 61 pages, 4 figures, supercharges in gravity and field theory identified, conclusion unchanged, published versio

    A new tri-generation system: thermodynamical analysis of a micro compressed air energy storage

    Get PDF
    There is a growing interest in the electrical energy storage system, especially for matching intermittent sources of renewable energy with customers’ demand. Furthermore, it is possible, with these system, to level the absorption peak of the electric network (peak shaving) and the advantage of separating the production phase from the exertion phase (time shift). CAES (compressed air energy storage systems) are one of the most promising technologies of this field, because they are characterized by a high reliability, low environmental impact and a remarkable energy density. The main disadvantage of big systems is that they depend on geological formations which are necessary to the storage. The micro-CAES system, with a rigid storage vessel, guarantees a high portability of the system and a higher adaptability even with distributed or stand-alone energy productions. This article carries out a thermodynamical and energy analysis of the micro-CAES system, as a result of the mathematical model created in a Matlab/Simulink® environment. New ideas will be discussed, as the one concerning the quasi-isothermal compression/expansion, through the exertion of a biphasic mixture, that will increase the total system efficiency and enable a combined production of electric, thermal and refrigeration energies. The exergy analysis of the results provided by the simulation of the model reports that more than one third of the exergy input to the system is lost. This is something promising for the development of an experimental device

    A matrix model for the latitude Wilson loop in ABJM theory

    Get PDF
    In ABJ(M) theory, we propose a matrix model for the exact evaluation of BPS Wilson loops on a latitude circular contour, so providing a new weak-strong interpolation tool. Intriguingly, the matrix model turns out to be a particular case of that computing torus knot invariants in U(N1∣N2)U(N_1|N_2) Chern-Simons theory. At weak coupling we check our proposal against a three-loop computation, performed for generic framing, winding number and representation. The matrix model is amenable of a Fermi gas formulation, which we use to systematically compute the strong coupling and genus expansions. For the fermionic Wilson loop the leading planar behavior agrees with a previous string theory prediction. For the bosonic operator our result provides a clue for finding the corresponding string dual configuration. Our matrix model is consistent with recent proposals for computing Bremsstrahlung functions exactly in terms of latitude Wilson loops. As a by-product, we extend the conjecture for the exact B1/6θB^{\theta}_{1/6} Bremsstrahlung function to generic representations and test it with a four-loop perturbative computation. Finally, we propose an exact prediction for B1/2B_{1/2} at unequal gauge group ranks.Comment: 73 pages; v2: several improvements, JHEP published versio

    Towards the exact Bremsstrahlung function of ABJM theory

    Get PDF
    We present the three-loop calculation of the Bremsstrahlung function associated to the 1/2-BPS cusp in ABJM theory, including color subleading corrections. Using the BPS condition we reduce the computation to that of a cusp with vanishing angle. We work within the framework of heavy quark effective theory (HQET) that further simplifies the analytic evaluation of the relevant cusp anomalous dimension in the near-BPS limit. The result passes nontrivial tests, such as exponentiation, and is in agreement with the conjecture made in [1] for the exact expression of the Bremsstrahlung function, based on the relation with fermionic latitude Wilson loops.Comment: 46 pages, 15 figure
    • …
    corecore