8 research outputs found

    Modulation of circRNA Metabolism by m6A Modification

    Get PDF
    N6-methyladenosine (m6A) is an RNA modification well-known for its contribution to different processes controlling RNA metabolism, including splicing, stability, and translation of mRNA. Conversely, the role of m6A on the biogenesis and function of circular RNAs (circRNAs) has yet to be addressed. circRNAs belong to a class of covalently closed transcripts produced via a back-splicing reaction whereby a downstream 5' splice donor site fuses to an upstream 3' splice acceptor site. Starting from circ-ZNF609 as a study case, we discover that specific m6As control its accumulation and that METTL3 and YTHDC1 are required to direct the back-splicing reaction. This feature is shared with other circRNAs because we find a significant direct correlation among METTL3 requirement, YTHDC1 binding, and the ability of m6A exons to undergo back-splicing. Finally, because circ-ZNF609 displays the ability to be translated, we show that m6A modifications, through recognition by YTHDF3 and eIF4G2, modulate its translation

    CircVAMP3: A circRNA with a Role in Alveolar Rhabdomyosarcoma Cell Cycle Progression

    No full text
    Circular RNAs (circRNAs), a class of covalently closed RNAs formed by a back-splicing reaction, have been involved in the regulation of diverse oncogenic processes. In this article we describe circVAMP3, a novel circular RNA overexpressed in RH4, a representative cell line of alveolar rhabdomyosarcoma. We demonstrated that circVAMP3 has a differential m6A pattern opposed to its linear counterpart, suggesting that the two isoforms can be differently regulated by such RNA modification. Moreover, we show how circVAMP3 depletion in alveolar rhabdomyosarcoma cells can impair cell cycle progression, through the alteration of the AKT-related pathways, pointing to this non-coding RNA as a novel regulator of the alveolar rhabdomyosarcoma progression and as a putative future therapeutic target

    Epigenetic inactivation of the 5-methylcytosine RNA methyltransferase NSUN7 is associated with clinical outcome and therapeutic vulnerability in liver cancer

    Get PDF
    Altres ajuts: The Australian National Medical Research Council (APP1061551, APP1135928) and the Australian Research Council (DP210102385)Background: RNA modifications are important regulators of transcript activity and an increasingly emerging body of data suggests that the epitranscriptome and its associated enzymes are altered in human tumors. Methods: Combining data mining and conventional experimental procedures, NSUN7 methylation and expression status was assessed in liver cancer cell lines and primary tumors. Loss-of-function and transfection-mediated recovery experiments coupled with RNA bisulfite sequencing and proteomics determined the activity of NSUN7 in downstream targets and drug sensitivity. Results: In this study, the initial screening for genetic and epigenetic defects of 5-methylcytosine RNA methyltransferases in transformed cell lines, identified that the NOL1/NOP2/Sun domain family member 7 (NSUN7) undergoes promoter CpG island hypermethylation-associated with transcriptional silencing in a cancer-specific manner. NSUN7 epigenetic inactivation was common in liver malignant cells and we coupled bisulfite conversion of cellular RNA with next-generation sequencing (bsRNA-seq) to find the RNA targets of this poorly characterized putative RNA methyltransferase. Using knock-out and restoration-of-function models, we observed that the mRNA of the coiled-coil domain containing 9B (CCDC9B) gene required NSUN7-mediated methylation for transcript stability. Most importantly, proteomic analyses determined that CCDC9B loss impaired protein levels of its partner, the MYC-regulator Influenza Virus NS1A Binding Protein (IVNS1ABP), creating sensitivity to bromodomain inhibitors in liver cancer cells exhibiting NSUN7 epigenetic silencing. The DNA methylation-associated loss of NSUN7 was also observed in primary liver tumors where it was associated with poor overall survival. Interestingly, NSUN7 unmethylated status was enriched in the immune active subclass of liver tumors. Conclusion: The 5-methylcytosine RNA methyltransferase NSUN7 undergoes epigenetic inactivation in liver cancer that prevents correct mRNA methylation. Furthermore, NSUN7 DNA methylation-associated silencing is associated with clinical outcome and distinct therapeutic vulnerability

    Simultaneous identification of m6A and m5C reveals coordinated RNA modification at single-molecule resolution

    No full text
    The epitranscriptome embodies many new and largely unexplored functions of RNA. A major roadblock in the epitranscriptomics field is the lack of transcriptome-wide methods to detect more than a single RNA modification type at a time, identify RNA modifications in individual molecules, and estimate modification stoichiometry accurately. We address these issues with CHEUI (CH3 (methylation) Estimation Using Ionic current), a new method that concurrently detects N6-methyladenosine (m6A) and 5-methylcytidine (m5C) in individual RNA molecules from the same sample, as well as differential methylation between any two conditions, using signals from nanopore direct RNA sequencing. CHEUI processes observed and expected signals with convolutional neural networks to achieve high single-molecule accuracy and outperform other methods in detecting m6A and m5C sites and quantifying their stoichiometry. CHEUI’s unique capability to identify two modification types in the same sample reveals a non-random co-occurrence of m6A and m5C in mRNA transcripts in cell lines and tissues. CHEUI unlocks an unprecedented potential to study RNA modification configurations and discover new epitranscriptome functions

    Epigenetic inactivation of the 5-methylcytosine RNA methyltransferase NSUN7 is associated with clinical outcome and therapeutic vulnerability in liver cancer

    No full text
    Abstract Background RNA modifications are important regulators of transcript activity and an increasingly emerging body of data suggests that the epitranscriptome and its associated enzymes are altered in human tumors. Methods Combining data mining and conventional experimental procedures, NSUN7 methylation and expression status was assessed in liver cancer cell lines and primary tumors. Loss-of-function and transfection-mediated recovery experiments coupled with RNA bisulfite sequencing and proteomics determined the activity of NSUN7 in downstream targets and drug sensitivity. Results In this study, the initial screening for genetic and epigenetic defects of 5-methylcytosine RNA methyltransferases in transformed cell lines, identified that the NOL1/NOP2/Sun domain family member 7 (NSUN7) undergoes promoter CpG island hypermethylation-associated with transcriptional silencing in a cancer-specific manner. NSUN7 epigenetic inactivation was common in liver malignant cells and we coupled bisulfite conversion of cellular RNA with next-generation sequencing (bsRNA-seq) to find the RNA targets of this poorly characterized putative RNA methyltransferase. Using knock-out and restoration-of-function models, we observed that the mRNA of the coiled-coil domain containing 9B (CCDC9B) gene required NSUN7-mediated methylation for transcript stability. Most importantly, proteomic analyses determined that CCDC9B loss impaired protein levels of its partner, the MYC-regulator Influenza Virus NS1A Binding Protein (IVNS1ABP), creating sensitivity to bromodomain inhibitors in liver cancer cells exhibiting NSUN7 epigenetic silencing. The DNA methylation-associated loss of NSUN7 was also observed in primary liver tumors where it was associated with poor overall survival. Interestingly, NSUN7 unmethylated status was enriched in the immune active subclass of liver tumors. Conclusion The 5-methylcytosine RNA methyltransferase NSUN7 undergoes epigenetic inactivation in liver cancer that prevents correct mRNA methylation. Furthermore, NSUN7 DNA methylation-associated silencing is associated with clinical outcome and distinct therapeutic vulnerability

    Prediction of m6A and m5C at single-molecule resolution reveals a cooccurrence of RNA modifications across the transcriptome

    No full text
    The epitranscriptome embodies many new and largely unexplored functions of RNA. A significant roadblock hindering progress in epitranscriptomics is the identification of more than one modification in individual transcript molecules. We address this with CHEUI (CH3 (methylation) Estimation Using Ionic current). CHEUI predicts N6-methyladenosine (m6A) and 5-methylcytidine (m5C) in individual molecules from the same sample, the stoichiometry at transcript reference sites, and differential methylation between any two conditions. CHEUI processes observed and expected nanopore direct RNA sequencing signals to achieve high single-molecule, transcript-site, and stoichiometry accuracies in multiple tests using synthetic RNA standards and cell line data. CHEUI’s capability to identify two modification types in the same sample reveals a co-occurrence of m6A and m5C in individual mRNAs in cell line and tissue transcriptomes. CHEUI provides new avenues to discover and study the function of the epitranscriptome

    Simultaneous identification of m6A and m5C reveals coordinated RNA modification at single-molecule resolution

    No full text
    The epitranscriptome embodies many new and largely unexplored functions of RNA. A major roadblock in the epitranscriptomics field is the lack of transcriptome-wide methods to detect more than a single RNA modification type at a time, identify RNA modifications in individual molecules, and estimate modification stoichiometry accurately. We address these issues with CHEUI (CH3 (methylation) Estimation Using Ionic current), a new method that concurrently detects N6-methyladenosine (m6A) and 5-methylcytidine (m5C) in individual RNA molecules from the same sample, as well as differential methylation between any two conditions. CHEUI processes observed and expected nanopore direct RNA sequencing signals with convolutional neural networks to achieve high single-molecule accuracy and outperforms other methods in detecting m6A and m5C sites and quantifying their stoichiometry. CHEUI’s unique capability to identify two modification types in the same sample reveals a non-random co-occurrence of m6A and m5C in mRNA transcripts in cell lines and tissues. CHEUI unlocks an unprecedented potential to study RNA modification configurations and discover new epitranscriptome functions
    corecore