30,985 research outputs found
Generic emergence of classical features in quantum Darwinism
Quantum Darwinism explains the emergence of classical reality from the
underlying quantum reality by the fact that a quantum system is observed
indirectly, by looking at parts of its environment, so that only specific
information about the system that is redundantly proliferated to many parts of
the environment becomes accessible and objective. However it is not clear under
what conditions this mechanism holds true. Here we rigorously prove that the
emergence of classicality is a general feature of any quantum dynamics:
observers who acquire information about a quantum system indirectly have access
at most to classical information about one and the same measurement of the
quantum system; moreover, if such information is available to many observers,
they necessarily agree. Remarkably, our analysis goes beyond the
system-environment categorization. We also provide a full characterization of
the so-called quantum discord in terms of local redistribution of correlations.Comment: Closer to published versio
Coherence in parametric fluorescence
We investigate spontaneous four wave mixing (SFWM) in a single-channel
side-coupled integrated spaced sequence of resonators (SCISSOR). Analytic
expressions for the number of photon pairs generated, as well as the biphoton
wave function (joint spectral amplitude) describing the pairs, are derived and
numerically computed for different pump pulse durations and numbers of ring
resonators. In the limit of a long input pump pulse, we show a strong analogy
between super-linear scaling of generation efficiency with respect to the
number of rings in the structure and Dicke superradiance. More generally, we
discuss in detail the factors that influence the shape of the biphoton wave
function, as well as the conditions for observing super-SFWM
Complex networks in brain electrical activity
We analyze the complex networks associated with brain electrical activity.
Multichannel EEG measurements are first processed to obtain 3D voxel
activations using the tomographic algorithm LORETA. Then, the correlation of
the current intensity activation between voxel pairs is computed to produce a
voxel cross-correlation coefficient matrix. Using several correlation
thresholds, the cross-correlation matrix is then transformed into a network
connectivity matrix and analyzed. To study a specific example, we selected data
from an earlier experiment focusing on the MMN brain wave. The resulting
analysis highlights significant differences between the spatial activations
associated with Standard and Deviant tones, with interesting physiological
implications. When compared to random data networks, physiological networks are
more connected, with longer links and shorter path lengths. Furthermore, as
compared to the Deviant case, Standard data networks are more connected, with
longer links and shorter path lengths--i.e., with a stronger ``small worlds''
character. The comparison between both networks shows that areas known to be
activated in the MMN wave are connected. In particular, the analysis supports
the idea that supra-temporal and inferior frontal data work together in the
processing of the differences between sounds by highlighting an increased
connectivity in the response to a novel sound.Comment: 22 pages, 5 figures. Starlab preprint. This version is an attempt to
include better figures (no content change
Web User Session Characterization via Clustering Techniques
We focus on the identification and definition of "Web user-sessions", an aggregation of several TCP connections generated by the same source host on the basis of TCP connection opening time. The identification of a user session is non trivial; traditional approaches rely on threshold based mechanisms, which are very sensitive to the value assumed for the threshold and may be difficult to correctly set. By applying clustering techniques, we define a novel methodology to identify Web user-sessions without requiring an a priori definition of threshold values. We analyze the characteristics of user sessions extracted from real traces, studying the statistical properties of the identified sessions. From the study it emerges that Web user-sessions tend to be Poisson, but correlation may arise during periods of network/hosts anomalous functioning
Swimmers in thin films: from swarming to hydrodynamic instabilities
We investigate theoretically the collective dynamics of a suspension of low
Reynolds number swimmers that are confined to two dimensions by a thin fluid
film. Our model swimmer is characterized by internal degrees of freedom which
locally exert active stresses (force dipoles or quadrupoles) on the fluid. We
find that hydrodynamic interactions mediated by the film can give rise to
spontaneous continuous symmetry breaking (swarming), to states with either
polar or nematic homogeneous order. For dipolar swimmers, the stroke averaged
dynamics are enough to determine the leading contributions to the collective
behaviour. In contrast, for quadrupolar swimmers, our analysis shows that
detailed features of the internal dynamics play an important role in
determining the bulk behaviour. In the broken symmetry phases, we investigate
fluctuations of hydrodynamic variables of the system and find that these
destabilize order. Interestingly, this instability is not generic and depends
on length-scale.Comment: 4 pages, 2 figures, references added, typos corrected, new
introductio
Shear viscosity of neutron matter from realistic nucleon-nucleon interactions
The calculation of transport properties of Fermi liquids, based on the
formalism developed by Abrikosov and Khalatnikov, requires the knowledge of the
probability of collisions between quasiparticles in the vicinity of the Fermi
surface. We have carried out a numerical study of the shear viscosity of pure
neutron matter, whose value plays a pivotal role in determining the stability
of rotating neutron stars, in which these processes are described using a
state-of-the-art nucleon-nucleon potential model. Within our approach medium
modifications of the scattering cross section are consistently taken into
account, through an effective interaction obtained from the matrix elements of
the bare interaction between correlated states. Inclusion of medium effects
lead to a large increase of the viscosity at densities larger than
fm^{-3}.Comment: 4 pages, 4 figures. Corrected typo
Ab-initio self-energy corrections in systems with metallic screening
The calculation of self-energy corrections to the electron bands of a metal
requires the evaluation of the intraband contribution to the polarizability in
the small-q limit. When neglected, as in standard GW codes for semiconductors
and insulators, a spurious gap opens at the Fermi energy. Systematic methods to
include intraband contributions to the polarizability exist, but require a
computationally intensive Fermi-surface integration. We propose a numerically
cheap and stable method, based on a fit of the power expansion of the
polarizability in the small-q region. We test it on the homogeneous electron
gas and on real metals such as sodium and aluminum.Comment: revtex, 14 pages including 5 eps figures v2: few fixe
Radiative observables for linearized gravity on asymptotically flat spacetimes and their boundary induced states
We discuss the quantization of linearized gravity on globally hyperbolic,
asymptotically flat, vacuum spacetimes and the construction of distinguished
states which are both of Hadamard form and invariant under the action of all
bulk isometries. The procedure, we follow, consists of looking for a
realization of the observables of the theory as a sub-algebra of an auxiliary,
non-dynamical algebra constructed on future null infinity . The
applicability of this scheme is tantamount to proving that a solution of the
equations of motion for linearized gravity can be extended smoothly to .
This has been claimed to be possible provided that a suitable gauge fixing
condition, first written by Geroch and Xanthopoulos, is imposed. We review its
definition critically showing that there exists a previously unnoticed
obstruction in its implementation leading us to introducing the concept of
radiative observables. These constitute an algebra for which a Hadamard state
induced from null infinity and invariant under the action of all spacetime
isometries exists and it is explicitly constructed.Comment: 31 pages, added reference
- …