44 research outputs found

    miR-21: an oncomir on strike in prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aberrant expression of microRNAs, small non-coding RNA molecules that post-transcriptionally repress gene expression, seems to be causatively linked to the pathogenesis of cancer. In this context, miR-21 was found to be overexpressed in different human cancers (e.g. glioblastoma, breast cancer). In addition, it is thought to be endowed with oncogenic properties due to its ability to negatively modulate the expression of tumor-suppressor genes (e.g. <it>PTEN</it>) and to cause the reversion of malignant phenotype when knocked- down in several tumor models. On the basis of these findings, miR-21 has been proposed as a widely exploitable cancer-related target. However, scanty information is available concerning the relevance of miR-21 for prostate cancer. In the present study, we investigated the role of miR-21 and its potential as a therapeutic target in two prostate cancer cell lines, characterized by different miR-21 expression levels and <it>PTEN </it>gene status.</p> <p>Results</p> <p>We provide evidence that miR-21 knockdown in prostate cancer cells is not sufficient <it>per se </it>i) to affect the proliferative and invasive potential or the chemo- and radiosensitivity profiles or ii) to modulate the expression of the tumor-suppressors PTEN and Pdcd4, which in other tumor types were found to be regulated by miR-21. We also show that miR-21 is not differently expressed in carcinomas and matched normal tissues obtained from 36 untreated prostate cancer patients subjected to radical prostatectomy.</p> <p>Conclusions</p> <p>Overall, our data suggest that miR-21 is not a central player in the onset of prostate cancer and that its single hitting is not a valuable therapeutic strategy in the disease. This supports the notion that the oncogenic properties of miR-21 could be cell and tissue dependent and that the potential role of a given miRNA as a therapeutic target should be contextualized with respect to the disease.</p

    Targeting of RET oncogene by naphthalene diimide-mediated gene promoter G-quadruplex stabilization exerts anti-tumor activity in oncogene-addicted human medullary thyroid cancer

    Get PDF
    Medullary thyroid cancer (MTC) relies on the aberrant activation of RET proto-oncogene. Though targeted approaches (i.e., tyrosine kinase inhibitors) are available, the absence of complete responses and the onset of resistance mechanisms indicate the need for novel therapeutic interventions. Due to their role in regulation of gene expression, G-quadruplexes (G4) represent attractive targets amenable to be recognized or stabilized by small molecules. Here, we report that exposure of MTC cells to a tri-substituted naphthalene diimide (NDI) resulted in a significant antiproliferative activity paralleled by inhibition of RET expression. Biophysical analysis and gene reporter assays showed that impairment of RET expression was consequent to the NDI-mediated stabilization of the G4 forming within the gene promoter. We also showed for the first time that systemic administration of the NDI in mice xenotransplanted with MTC cells resulted in a remarkable inhibition of tumor growth in vivo. Overall, our findings indicate that NDI-dependent RET G4 stabilization represents a suitable approach to control RET transcription and delineate the rationale for the development of G4 stabilizing-based treatments for MTC as well as for other tumors in which RET may have functional and therapeutic implications

    The Oncogenic Signaling Pathways in BRAF-Mutant Melanoma Cells are Modulated by Naphthalene Diimide-Like G-Quadruplex Ligands

    Get PDF
    Melanoma is the most aggressive and deadly type of skin cancer. Despite the advent of targeted therapies directed against specific oncogene mutations, melanoma remains a tumor that is very difficult to treat, and ultimately remains incurable. In the past two decades, stabilization of the non-canonical nucleic acid G-quadruplex structures within oncogene promoters has stood out as a promising approach to interfere with oncogenic signaling pathways in cancer cells, paving the way toward the development of G-quadruplex ligands as antitumor drugs. Here, we present the synthesis and screening of a library of differently functionalized core-extended naphthalene diimides for their activity against the BRAFV600E-mutant melanoma cell line. The most promising compound was able to stabilize G-quadruplexes that formed in the promoter regions of two target genes relevant to melanoma, KIT and BCL-2. This activity led to the suppression of protein expression and thus to interference with oncogenic signaling pathways involved in BRAF-mutant melanoma cell survival, apoptosis, and resistance to drugs. This G-quadruplex ligand thus represents a suitable candidate for the development of melanoma treatment options based on a new mechanism of action and could reveal particular significance in the context of resistance to targeted therapies of BRAF-mutant melanoma cells

    Synthesis and Superpotent Anticancer Activity of Tubulysins Carrying Non-hydrolysable N-Substituents on Tubuvaline

    Get PDF
    We thank Regione Autonoma della Sardegna RAS (Italy) for economic support by covering in part the costs of this research. I.U. acknowledges RAS for his fellowship (for grant numbers see the Supporting Information)Peer reviewedPostprin

    Real world effectiveness of subcutaneous semaglutide in type 2 diabetes: A retrospective, cohort study (Sema-MiDiab01)

    Get PDF
    IntroductionAim of the present study was to evaluate the real-world impact of once-weekly (OW) subcutaneous semaglutide on different end-points indicative of metabolic control, cardiovascular risk factors, and beta-cell function in type 2 diabetes (T2D).MethodsThis was a retrospective, observational study conducted in 5 diabetes clinics in Italy. Changes in HbA1c, fasting blood glucose (FBG), body weight, blood pressure, lipid profile, renal function, and beta-cell function (HOMA-B) during 12 months were evaluated.ResultsOverall, 594 patients (97% GLP-1RA naĂŻve) were identified (mean age 63.9 ± 9.5 years, 58.7% men, diabetes duration 11.4 ± 8.0 years). After 6 months of treatment with OW semaglutide, HbA1c levels were reduced by 0.90%, FBG by 26 mg/dl, and body weight by 3.43 kg. Systolic blood pressure, total and LDL-cholesterol significantly improved. Benefits were sustained at 12 months. Renal safety was documented. HOMA-B increased from 40.2% to 57.8% after 6 months (p&lt;0.0001).DiscussionThe study highlighted benefits of semaglutide on metabolic control, multiple CV risk factors, and renal safety in the real-world. Semaglutide seems to be an advisable option for preservation of ÎČ-cell function and early evidence suggests it might have a role in modifying insulin resistance (HOMA-IR), the pathogenetic basis of prediabetes and T2D

    Double stranded promoter region of BRAF undergoes to structural rearrangement in nearly physiological conditions

    Get PDF
    The folding of oncogene promoters into non-canonical DNA secondary structures is considered a strategy to control gene expression. Herein, we focused on a 30 bases sequence located upstream of the transcription start site of BRAF (Braf-176) that contains 80% of guanines. We analyzed the structural behavior of the G- and C-rich strands. By the use of spectroscopic and electrophoretic techniques we confirmed that they actually fold into a predominant antiparallel G-quadruplex and into an i-motif, respectively, and that they can coexist at nearly physiological conditions. Finally, the influence of several factors (KCl, pH, PEG\u2082\u2080\u2080) on the conversion of the double stranded form of the oncogene promoter into the two above mentioned non-canonical structures has been explored

    G-Quadruplex Structures in the Human Genome as Novel Therapeutic Targets

    No full text
    G-quadruplexes are secondary structures that may form within guanine-rich nucleic acid sequences. Telomeres have received much attention in this regard since they can fold into several distinct intramolecular G-quadruplexes, leading to the rational design and development of G-quadruplex‑stabilizing molecules. These ligands were shown to selectively exert an antiproliferative and chemosensitizing activity in in vitro and in vivo tumor models, without appreciably affecting normal cells. Such findings point to them as possible drug candidates for clinical applications. Other than in telomeres, G-quadruplexes may form at additional locations in the human genome, including gene promoters and untranslated regions. For instance, stabilization of G-quadruplex structures within the promoter of MYC, KIT, or KRAS resulted in the down-regulation of the corresponding oncogene either in gene reporter assays or in selected experimental models. In addition, the alternative splicing of a number of genes may be affected for a therapeutic benefit through the stabilization of G-quadruplexes located within pre-mRNAs. It is now emerging that G-quadruplex structures may act as key regulators of several biological processes. Consequently, they are considered as attractive targets for broad-spectrum anticancer therapies, and much effort is being made to develop a variety of ligands with improved G-quadruplex recognition properties. Quarfloxin, a fluoroquinolone derivative designed to target a G-quadruplex within ribosomal DNA and disrupt protein-DNA interactions, has entered clinical trials for different malignancies. This review will provide some hints on the role of G-quadruplex structures in biological processes and will evaluate their implications as novel therapeutic targets

    Cloud radiative forcing intercomparison between fully coupled CMIP5 models and CERES satellite data

    No full text
    In this paper, radiative fluxes for 10 years from 11 models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) and from CERES satellite observations have been analyzed and compared. Under present-day conditions, the majority of the investigated CMIP5 models show a tendency towards a too-negative global mean net cloud radiative forcing (NetCRF) as compared to CERES. A separate inspection of the long-wave and shortwave contribution (LWCRF and SWCRF) as well as cloud cover points to different shortcomings in different models. Models with a similar NetCRF still differ in their SWCRF and LWCRF and/or cloud cover. Zonal means mostly show excessive SWCRF (too much cooling) in the tropics between 20° S and 20° N and in the midlatitudes between 40 to 60° S. Most of the models show a too-small/too-weak LWCRF (too little warming) in the subtropics (20 to 40° S and N). Difference maps between CERES and the models identify the tropical Pacific Ocean as an area of major discrepancies in both SWCRF and LWCRF. The summer hemisphere is found to pose a bigger challenge for the SWCRF than the winter hemisphere. The results suggest error compensation to occur between LWCRF and SWCRF, but also when taking zonal and/or annual means. Uncertainties in the cloud radiative forcing are thus still present in current models used in CMIP5.ISSN:0992-7689ISSN:0939-4176ISSN:1432-057
    corecore