14 research outputs found

    Decentralizing Electric Vehicle Supply Chains: Value Proposition and System Design

    Get PDF
    Distributed ledger technologies are transforming existing business models and business relationships. In particular, blockchain allows non-trusting parties to manage a shared database in a decentralized way and improve the transparency, authenticity, and reliability of the exchanged data. Nonetheless, decentralized paradigms are not yet well established, resulting in only a fraction of blockchain-based applications being successful in the long term.In this paper, we present a blockchain-based solution for the electric vehicle supply chain that we designed in the context of the CONCORDIA project of the European Cybersecurity Competence Network. We describe the goals, the value proposition, the main design choices, and the architecture of our system. Moreover, we discuss the electric vehicle supply chain, analyzing the improvements and limitations introduced by our blockchain-based solution. We analyze our solution from the managerial and technical points of view through a lean business methodology for blockchain solutions. In particular, we developed an economic impact assessment to evaluate the potential costs and revenues of the application of blockchain technology in a supply chain context. Although the blockchain system is inspired by the supply chain of a multinational automotive company, it can be applied to any other multi-actor supply chain

    Policosanol in Tomato (Solanum lycopersicum L.) Seed Oil: the Effect of Cultivar.

    Get PDF
    Soxhlet-petroleum ether extraction was used to obtain oil from tomato seeds. Three tomato cultivars from South Italy (Principe Borghese, Rebelion F1 and San Marzano) were studied. Policosanol is a mixture of long chain linear fatty alcohols (n-alkanols), its content and composition was found to be highly significantly influenced by cultivar. Seven fatty alcohols were detected: docosanol (C22-ol), tricosanol (C23-ol), tetracosanol (C24-ol), pentacosanol (C25-ol), hexacosanol (C26-ol), heptacosanol (C27-ol) and octacosanol (C28-ol). The highest policosanol content was found in Principe Borghese 71.88 mg/Kg. Octacosanol was the linear alcohol present in highest quantity, i.e. 38-42% of the total linear alcohols detected in tomato seed oils (TSO). Chemometrics was applied to study the differences among cultivars. The sum of even long chained fatty alcohols was always more than 95% of the total policosanol content. One-way ANOVA and principal component analysis well differentiated the three cultivars

    Influence of High Temperature and Duration of Heating on the Sunflower Seed Oil Properties for Food Use and Bio-diesel Production.

    Get PDF
    Two important problems for the food industry are oil oxidation and oil waste after frying. Sunflower seed oil is one of the vegetable oils most commonly used in the food industry. Two variables were applied to the low oleic sunflower seed oil in this work i.e. heating temperature (180-210-240°C) and time of heating (15-30-60-120 minutes), to study from the edible point of view the variations of its physico-chemical properties. After 120 minutes heating at 240°C the following was found: refractive index (1.476), free acidity (0.35%), K232 (2.87), K270 (3.71), antiradical activity (45.90% inhibition), total phenols (523 mg kg-1), peroxide value (17.00 meq kg-1), p-anisidine value (256.8) and Totox (271.7), all of which showed a constant deterioration. In relation to the use as a feedstock for bio-diesel production, after 120 minutes heating at 240℃ the following was found: acid value 0.70 mg KOH g-1 oil, iodine value 117.83 g I2 100 g-1 oil, oil stability index 0.67 h, kinematic viscosity (at 40°C) 77.85 mm2 s-1, higher heating value 39.86 MJ kg-1, density 933.34 kg/m3 and cetane number 67.04. The parameters studied in this work were influenced, in different ways, by the applied variables. Heating temperature between 180 and 210°C and 120 min heating duration were found to be the most appropriate conditions for sunflower seed oil both from the deep frying point of view and from a subsequent use as feedstock for bio-diesel production. In light of the vegetable oils' International standards for an edible use and for a bio-diesel production, findings of this work can be used to set heating temperature and heating duration to preserve as long possible the physico-chemical properties of a low oleic sunflower seed oil for both its edible use as a fat during cooking and for its re-use after frying

    Policosanol in Tomato (<i>Solanum lycopersicum</i> L.) Seed Oil: the Effect of Cultivar

    No full text
    Soxhlet-petroleum ether extraction was used to obtain oil from tomato seeds. Three tomato cultivars from South Italy (Principe Borghese, Rebelion F1 and San Marzano) were studied. Policosanol is a mixture of long chain linear fatty alcohols (n-alkanols), its content and composition was found to be highly significantly influenced by cultivar. Seven fatty alcohols were detected: docosanol (C22-ol), tricosanol (C23-ol), tetracosanol (C24-ol), pentacosanol (C25-ol), hexacosanol (C26-ol), heptacosanol (C27-ol) and octacosanol (C28-ol). The highest policosanol content was found in Principe Borghese 71.88 mg/Kg. Octacosanol was the linear alcohol present in highest quantity, i.e. 38-42% of the total linear alcohols detected in tomato seed oils (TSO). Chemometrics was applied to study the differences among cultivars. The sum of even long chained fatty alcohols was always more than 95% of the total policosanol content. One-way ANOVA and principal component analysis well differentiated the three cultivars

    Influence of High Temperature and Duration of Heating on the Sunflower Seed Oil Properties for Food Use and Bio-diesel Production

    No full text
    Two important problems for the food industry are oil oxidation and oil waste after frying. Sunflower seed oil is one of the vegetable oils most commonly used in the food industry. Two variables were applied to the low oleic sunflower seed oil in this work i.e. heating temperature (180-210-240°C) and time of heating (15-30-60-120 minutes), to study from the edible point of view the variations of its physico-chemical properties. After 120 minutes heating at 240°C the following was found: refractive index (1.476), free acidity (0.35%), K232 (2.87), K270 (3.71), antiradical activity (45.90% inhibition), total phenols (523 mg kg-1), peroxide value (17.00 meq kg-1), p-anisidine value (256.8) and Totox (271.7), all of which showed a constant deterioration. In relation to the use as a feedstock for bio-diesel production, after 120 minutes heating at 240℃ the following was found: acid value 0.70 mg KOH g-1 oil, iodine value 117.83 g I2 100 g-1 oil, oil stability index 0.67 h, kinematic viscosity (at 40°C) 77.85 mm2 s-1, higher heating value 39.86 MJ kg-1, density 933.34 kg/m3 and cetane number 67.04. The parameters studied in this work were influenced, in different ways, by the applied variables. Heating temperature between 180 and 210°C and 120 min heating duration were found to be the most appropriate conditions for sunflower seed oil both from the deep frying point of view and from a subsequent use as feedstock for bio-diesel production. In light of the vegetable oils' International standards for an edible use and for a bio-diesel production, findings of this work can be used to set heating temperature and heating duration to preserve as long possible the physico-chemical properties of a low oleic sunflower seed oil for both its edible use as a fat during cooking and for its re-use after frying

    Breadsticks Flavoured with Olives and Onions: One-Year Shelf Life

    No full text
    In this work, we compared breadsticks (known as Treccine) flavoured with onions and olives and prepared with olive pomace oil (OPO) or with extra virgin olive oil (EVOO). The effect on one-year shelf life was also studied. The following physical, chemical and sensory analyses were conducted on the breadsticks: water activity, moisture content, colour, texture and sensory analysis (appearance, colour, flavour, taste, texture and overall acceptability). For the oil extracted from the Treccine, we determined acidity, peroxide value, spectrophotometric parameters, ABTS and DPPH assay on the hydrolitic fraction, DPPH on the lipid fraction, and fatty acids. We detected a progressive deterioration in the quality of breadsticks with a decrease in shelf life after 4–6 months in relation to each studied parameter. In the analysed breadsticks, water activity was 0.342 (OPO recipe) and 0.387 (EVOO recipe) after one-year storage; in the same storage period, the moisture content was 6.34 times (OPO) and 5.32 times (EVOO) greater. Appearance and colour were the only two sensory parameters which, after 12 months, remained above or equal to five stated as the minimum quality value. In the extracted oil, Free acidity increased from 0.35 to 0.56% (OPO) and from 0.71 to 0.98% (EVOO); Peroxide value ranged between 6.10 and 102.89 meq/kg oil (OPO) and between 4.41 and 20.91 meq/kg oil (EVOO). K232 was highest in OPO (2.43–3.70) and lowest in EVOO (1.76–2.92), K268 was 1.32–1.580 (OPO recipe) and 0.570–0.640 (EVOO recipe). Treccine prepared with extra virgin olive oil showed better biological properties and longer shelf life

    Effects of Shortening Replacement with Extra Virgin Olive Oil on the Physical–Chemical–Sensory Properties of Italian Cantuccini Biscuits

    No full text
    Olive oil is recognised for its beneficial effects on human health, mainly due to it containing oleic acid (a monounsaturated fatty acid), whereas fats of animal origin or margarine, which are often used in recipes for biscuit production, contain mainly saturated fatty acids. The aim of this study was to evaluate the shelf-life and physicochemical properties of biscuits and of the fats contained in original recipe Italian Cantuccini biscuits (50% cow’s butter and 50% margarine). Additionally, the sensory properties of the biscuits were evaluated, including their colour, appearance, taste, flavour, texture and overall acceptability. At the same time, the fat composition of the original recipe was also modified to contain 30% cow’s butter and 70% extra virgin olive oil, in order to replace an aliquot of the saturated fatty acid content with unsaturated fatty acids, in particular with one monounsaturated fatty acid, oleic acid. Colour (CIELab), water activity, relative humidity, hardness and fracturability analyses were conducted on Cantuccini biscuits. Colour (CIELab), free acidity, spectrophotometric characteristics, DPPH assay and fatty acid methyl ester (FAMEs) analyses were conducted on the fat extracted from Cantuccini biscuits prepared from both the original and modified recipes

    Seed Oil from Ten Algerian Peanut Landraces for Edible Use and Biodiesel Production.

    Get PDF
    As a result of a recent ad hoc prospection of the Algerian territory, a collection of peanut (groundnut; Arachis hypogaea L.) landraces was established, covering a remarkable array of diversity in terms of morphological and physiological features, as well as of adaptation to local bioclimatic conditions. In the present work, the oils extracted from the seeds of these landraces were evaluated in terms of edible properties and suitability for biodiesel production. As for edible use, a low free acidity (ranging from 0.62 to 1.21%) and a high oleic acid content (44.61-50.94%) were common features, although a poor stability to oxidation [high peroxide values, high spectrophotometric indices, and low % of inhibition in the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH)· test] was observed in a few cases. As for biodiesel production, low values of acidity [1.23-2.40 mg KOH (g oil)(-1)], low iodine values [90.70-101.54 g I2 (g oil)(-1)], high cetane numbers (56.95-58.88) and high calorific values (higher heating value 37.34-39.27 MJ kg(-1)) were measured. Edible properties and suitability for biodiesel production were discussed with respect to the German standard DIN 51605 for rapeseed oil and to the EN 14214 standard, respectively. One way ANOVA and Hierarchical Cluster Analysis showed significant differences among the oils from the Algerian peanut landraces

    Seed Oil from Ten Algerian Peanut Landraces for Edible Use and Biodiesel Production

    No full text
    As a result of a recent ad hoc prospection of the Algerian territory, a collection of peanut (groundnut; Arachis hypogaea L.) landraces was established, covering a remarkable array of diversity in terms of morphological and physiological features, as well as of adaptation to local bioclimatic conditions. In the present work, the oils extracted from the seeds of these landraces were evaluated in terms of edible properties and suitability for biodiesel production. As for edible use, a low free acidity (ranging from 0.62 to 1.21%) and a high oleic acid content (44.61-50.94%) were common features, although a poor stability to oxidation [high peroxide values, high spectrophotometric indices, and low % of inhibition in the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH)· test] was observed in a few cases. As for biodiesel production, low values of acidity [1.23-2.40 mg KOH (g oil)(-1)], low iodine values [90.70-101.54 g I2 (g oil)(-1)], high cetane numbers (56.95-58.88) and high calorific values (higher heating value 37.34-39.27 MJ kg(-1)) were measured. Edible properties and suitability for biodiesel production were discussed with respect to the German standard DIN 51605 for rapeseed oil and to the EN 14214 standard, respectively. One way ANOVA and Hierarchical Cluster Analysis showed significant differences among the oils from the Algerian peanut landraces

    Cardiomiopatia ipertrofica in un caso di sindrome di Berardinelli

    No full text
    corecore