2,019 research outputs found

    Recent developments in rare kaon decays

    Full text link
    We discuss issues in rare and radiative kaon decays. The interest is to extract useful short-distance information and uncover underlying dynamics. We emphasize channels where either we can understand non-perturbative aspects of QCD or there is a chance to test the Standard Model.Comment: Invited minireview for Modern Physics Letters A (MPLA), 15 pages, 9 figures, usepackages epsf,colo

    Electroweak Radiative Corrections To Polarized M{\o}ller Scattering Asymmetries

    Get PDF
    One loop electroweak radiative corrections to left-right parity violating M{\o}ller scattering (eeeee^-e^-\to e^-e^-) asymmetries are presented. They reduce the standard model (tree level) prediction by 40±3\pm 3 \% where the main shift and uncertainty stem from hadronic vacuum polarization loops. A similar reduction also occurs for the electron-electron atomic parity violating interaction. That effect can be attributed to an increase of sin2θW(q2)\sin^2\theta_W(q^2) by 3%3\% in running from q2=mZ2q^2=m_Z^2 to 0. The sensitivity of the asymmetry to ``new physics'' is also discussed.Comment: 14 pages, Revtex, postscript file including figures is available at ftp://ttpux2.physik.uni-karlsruhe.de/ttp95-14/ttp95-14.ps or via WWW at http://ttpux2.physik.uni-karlsruhe.de/cgi-bin/preprints/ (129.13.102.139

    "Dark" Z implications for Parity Violation, Rare Meson Decays, and Higgs Physics

    Full text link
    General consequences of mass mixing between the ordinary Z boson and a relatively light Z_d boson, the "dark" Z, arising from a U(1)_d gauge symmetry, associated with a hidden sector such as dark matter, are examined. New effects beyond kinetic mixing are emphasized. Z-Z_d mixing introduces a new source of low energy parity violation well explored by possible future atomic parity violation and planned polarized electron scattering experiments. Rare K (B) meson decays into pi (K) l^+ l^- (l = e, mu) and pi (K) nu anti-nu are found to already place tight constraints on the size of Z-Z_d mixing. Those sensitivities can be further improved with future dedicated searches at K and B factories as well as binned studies of existing data. Z-Z_d mixing can also lead to the Higgs decay H -> Z Z_d, followed by Z -> l_1^+ l_1^- and Z_d -> l_2^+ l_2^- or "missing energy", providing a potential hidden sector discovery channel at the LHC. An illustrative realization of these effects in a 2 Higgs doublet model is presented.Comment: Version to appear in PR

    Rare kaon decays in SUSY with non-universal A terms

    Full text link
    We study the rare kaon decays in the framework of general SUSY models. Unlike the results in the literature, we find the contributions from the gluino exchange to the branching ratio of K+π+ννˉK^+\to \pi^+ \nu \bar{\nu} can reach the central value (1.5×1010\sim 1.5 \times 10^{-10}) of the new E787 data while the predicted value of standard model is less than 101010^{-10}. We also find that the same effects also enhance the decays of KLπ0ννˉK_{L}\to \pi^0 \nu \bar{\nu}, KLπ0e+eK_L\to\pi^0e^{+} e^{-} and KLμ+μK_L\to\mu^+ \mu^-.Comment: 9 pages, references added, revised version to appear in J. Phys.

    K_L \ra \mu^\pm e^\mp \nu \overline{\nu} as background to K_L \ra \mu^\pm e^\mp

    Full text link
    We consider the process K_L \ra \mu^\pm e^\mp \nu \overline{\nu} at next to leading order in chiral perturbation theory. This process occurs in the standard model at second order in the weak interaction and constitutes a potential background in searches for new physics through the modes K_L \ra \mu^\pm e^\mp. We find that the same cut, Mμe>489M_{\mu e}>489~MeV, used to remove the sequential decays K_{l3}\ra \pi_{l2} pushes the B(K_L \ra \mu^\pm e^\mp \nu \overline{\nu}) to the 102310^{-23} level, effectively removing it as a background.Comment: 8 pages, LaTeX, 1 figure appended as postscript file after \end{document}. Fermilab-Pub-93/024-

    Fermi Constants and ``New Physics''

    Get PDF
    Various precision determinations of the Fermi constant are compared. Included are muon and (leptonic) tau decays as well as indirect prescriptions employing \alpha, m_Z, m_W, \ssthwmzms, \Gamma(Z\to\ell^+\ell^-), and Γ(Zννˉ)\Gamma(Z \to \nu\bar \nu) as input. Their good agreement tests the standard model at the ±0.1\pm 0.1% level and provides stringent constraints on new physics. That utility is illustrated for: heavy neutrino mixing, 2 Higgs doublet models, S, T, and U parameters and excited W±W^{\ast^\pm} bosons (Kaluza-Klein excitations). For the last of those examples, m_{W^\ast}\gsims 2.9 TeV is found.Comment: 14 page

    Model-dependent radiative corrections to tau- -> pi- pi0 nu revisited

    Full text link
    The long-distance electromagnetic radiative corrections to tau- -> pi- pi0 nu are re-evaluated. A meson dominance model is used to describe the emission of real photons in this decay. Results obtained for the hadronic spectrum and the decay rate in photon inclusive reactions are compared with previous calculations based on the chiral resonance theory. Independent tests in tau -> pi pi nu gamma that can help to validate the predictions of one of the two models are briefly discussed.Comment: 5 pages, 4 figures, talk given by GLC at the 9th International Workshop on Tau Lepton Physics, Pisa (Italy), september 200

    Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering

    Full text link
    A previous calculation of electroweak O(alpha) corrections to deep-inelastic neutrino scattering, as e.g. measured by NuTeV and NOMAD, is supplemented by higher-order effects. In detail, we take into account universal two-loop effects from \Delta\alpha and \Delta\rho as well as higher-order final-state photon radiation off muons in the structure function approach. Moreover, we make use of the recently released O(alpha)-improved parton distributions MRST2004QED and identify the relevant QED factorization scheme, which is DIS like. As a technical byproduct, we describe slicing and subtraction techniques for an efficient calculation of a new type of real corrections that are induced by the generated photon distribution. A numerical discussion of the higher-order effects suggests that the remaining theoretical uncertainty from unknown electroweak corrections is dominated by non-universal two-loop effects and is of the order 0.0003 when translated into a shift in sin^2\theta_W=1-MW^2/MZ^2. The O(alpha) corrections implicitly included in the parton distributions lead to a shift of about 0.0004.Comment: 25 pages, latex, 8 postscript figure

    Evidence for Bosonic Electroweak Corrections in the Standard Model

    Get PDF
    We present strong indirect evidence for the contribution of bosonic electroweak corrections in the Standard Model. Although important conceptually, these corrections give subleading contributions in current high energy experiments, and it was previously thought that they are difficult to detect. We also discuss the separate contribution of the Higgs boson.Comment: 9 pages (LaTeX + 3 PS figures, needs psfig
    corecore