36 research outputs found

    Limited-memory BFGS Systems with Diagonal Updates

    Get PDF
    In this paper, we investigate a formula to solve systems of the form (B + {\sigma}I)x = y, where B is a limited-memory BFGS quasi-Newton matrix and {\sigma} is a positive constant. These types of systems arise naturally in large-scale optimization such as trust-region methods as well as doubly-augmented Lagrangian methods. We show that provided a simple condition holds on B_0 and \sigma, the system (B + \sigma I)x = y can be solved via a recursion formula that requies only vector inner products. This formula has complexity M^2n, where M is the number of L-BFGS updates and n >> M is the dimension of x

    On Solving L-SR1 Trust-Region Subproblems

    Full text link
    In this article, we consider solvers for large-scale trust-region subproblems when the quadratic model is defined by a limited-memory symmetric rank-one (L-SR1) quasi-Newton matrix. We propose a solver that exploits the compact representation of L-SR1 matrices. Our approach makes use of both an orthonormal basis for the eigenspace of the L-SR1 matrix and the Sherman-Morrison-Woodbury formula to compute global solutions to trust-region subproblems. To compute the optimal Lagrange multiplier for the trust-region constraint, we use Newton's method with a judicious initial guess that does not require safeguarding. A crucial property of this solver is that it is able to compute high-accuracy solutions even in the so-called hard case. Additionally, the optimal solution is determined directly by formula, not iteratively. Numerical experiments demonstrate the effectiveness of this solver.Comment: 2015-0

    Sequential anomaly detection in the presence of noise and limited feedback

    Full text link
    This paper describes a methodology for detecting anomalies from sequentially observed and potentially noisy data. The proposed approach consists of two main elements: (1) {\em filtering}, or assigning a belief or likelihood to each successive measurement based upon our ability to predict it from previous noisy observations, and (2) {\em hedging}, or flagging potential anomalies by comparing the current belief against a time-varying and data-adaptive threshold. The threshold is adjusted based on the available feedback from an end user. Our algorithms, which combine universal prediction with recent work on online convex programming, do not require computing posterior distributions given all current observations and involve simple primal-dual parameter updates. At the heart of the proposed approach lie exponential-family models which can be used in a wide variety of contexts and applications, and which yield methods that achieve sublinear per-round regret against both static and slowly varying product distributions with marginals drawn from the same exponential family. Moreover, the regret against static distributions coincides with the minimax value of the corresponding online strongly convex game. We also prove bounds on the number of mistakes made during the hedging step relative to the best offline choice of the threshold with access to all estimated beliefs and feedback signals. We validate the theory on synthetic data drawn from a time-varying distribution over binary vectors of high dimensionality, as well as on the Enron email dataset.Comment: 19 pages, 12 pdf figures; final version to be published in IEEE Transactions on Information Theor
    corecore