1,255 research outputs found
Transport Properties in the "Strange Metal Phase" of High Tc Cuprates: Spin-Charge Gauge Theory Versus Experiments
The SU(2)xU(1) Chern-Simons spin-charge gauge approach developed earlier to
describe the transport properties of the cuprate superconductors in the
``pseudogap'' regime, in particular, the metal-insulator crossover of the
in-plane resistivity, is generalized to the ``strange metal'' phase at higher
temperature/doping. The short-range antiferromagnetic order and the gauge field
fluctuations, which were the key ingredients in the theory for the pseudogap
phase, also play an important role in the present case. The main difference
between these two phases is caused by the existence of an underlying
statistical -flux lattice for charge carriers in the former case, whereas
the background flux is absent in the latter case. The Fermi surface then
changes from small ``arcs'' in the pseudogap to a rather large closed line in
the strange metal phase. As a consequence the celebrated linear in T dependence
of the in-plane and out-of-plane resistivity is shown explicitly to recover.
The doping concentration and temperature dependence of theoretically calculated
in-plane and out-of-plane resistivity, spin-relaxation rate and AC conductivity
are compared with experimental data, showing good agreement.Comment: 14 pages, 5 .eps figures, submitted to Phys. Rev. B, revised version
submitted on 24 Oc
Fractional exclusion and braid statistics in one dimension: a study via dimensional reduction of Chern-Simons theory
The relation between braid and exclusion statistics is examined in
one-dimensional systems, within the framework of Chern-Simons statistical
transmutation in gauge invariant form with an appropriate dimensional
reduction. If the matter action is anomalous, as for chiral fermions, a
relation between braid and exclusion statistics can be established explicitly
for both mutual and nonmutual cases. However, if it is not anomalous, the
exclusion statistics of emergent low energy excitations is not necessarily
connected to the braid statistics of the physical charged fields of the system.
Finally, we also discuss the bosonization of one-dimensional anyonic systems
through T-duality.Comment: 19 pages, fix typo
Hydrodynamics of liquids of arbitrarily curved flux-lines and vortex loops
We derive a hydrodynamic model for a liquid of arbitrarily curved flux-lines
and vortex loops using the mapping of the vortex liquid onto a liquid of
relativistic charged quantum bosons in 2+1 dimensions recently suggested by
Tesanovic and by Sudbo and collaborators. The loops in the flux-line system
correspond to particle-antiparticle fluctuations in the bosons. We explicitly
incorporate the externally applied magnetic field which in the boson model
corresponds to a chemical potential associated with the conserved charge
density of the bosons. We propose this model as a convenient and physically
appealing starting point for studying the properties of the vortex liquid
Spin-charge gauge approach to metal-insulator crossover and transport properties in High-T cuprates
The spin-charge gauge approach to consider the metal-insulator crossover
(MIC) and other anomalous transport properties in High-T cuprates is
briefly reviewed. A U(1) field gauging the global charge symmetry and an SU(2)
field gauging the global spin-rotational symmetry are introduced to study the
two-dimensional model in the limit . The MIC as a clue to the
understanding of the ``pseudogap'' (PG) phase, is attributed to the competition
between the short-range antiferromagnetic order and dissipative motion of
charge carriers coupled to the slave-particle gauge field. The composite
particle formed by binding the charge carrier (holon) and spin excitation
(spinon) via the slave particle gauge field exhibits a number of peculiar
properties, and the calculated results are in good agreement with experimental
data for both PG and ``strange metal'' phases. Connections to other gauge field
approaches in studying the strong correlation problem are also briefly
outlined.Comment: 32 pages, to appear in the special issue on "Correlated Electrons" of
J. Phys.: Condens. Mat
In-Plane Conductivity Anisotropy in Underdoped Cuprates in the Spin-Charge Gauge Approach
Applying the recently developed spin-charge gauge theory for the pseudogap
phase in cuprates, we propose a self-consistent explanation of several peculiar
features of the far-infrared in-plane AC conductivity, including a broad peak
as a function of frequency and significant anisotropy at low temperatures,
along with a similar temperature-dependent in-plane anisotropy of DC
conductivity in lightly doped cuprates. The anisotropy of the metal-insulator
crossover scale is considered to be responsible for these phenomena. The
obtained results are in good agreement with experiments. An explicit proposal
is made to further check the theory.Comment: 5 pages, 3 figures, to appear in Phys. Rev.
Dimensional reduction of U(1) x SU(2) Chern-Simons bosonization: application to the t-J model
We perform a dimensional reduction of the U(1)\times SU(2) Chern--Simons bosonization and apply it to the t-J model, relevant for high T_c superconductors. This procedure yields a decomposition of the electron field into a product of two ``semionic" fields, i.e. fields obeying abelian braid statistics with statistics parameter \theta={1\over 4}, one carrying the charge and the other the spin degrees of freedom. A mean field theory is then shown to reproduce correctly the large distance behaviour of the correlation functions of the 1D t-J model at t>>J. This result shows that to capture the essential physical properties of the model one needs a specific ``semionic" form of spin--charge separation
Theory of Double-Sided Flux Decorations
A novel two-sided Bitter decoration technique was recently employed by Yao et
al. to study the structure of the magnetic vortex array in high-temperature
superconductors. Here we discuss the analysis of such experiments. We show that
two-sided decorations can be used to infer {\it quantitative} information about
the bulk properties of flux arrays, and discuss how a least squares analysis of
the local density differences can be used to bring the two sides into registry.
Information about the tilt, compressional and shear moduli of bulk vortex
configurations can be extracted from these measurements.Comment: 17 pages, 3 figures not included (to request send email to
[email protected]
More properties of (β,γ)-Chebyshev functions and points
Recently, (β,γ)-Chebyshev functions, as well as the corresponding zeros, have been introduced as a generalization of classical Chebyshev polynomials of the first kind and related roots. They consist of a family of orthogonal functions on a subset of [−1,1], which indeed satisfies a three-term recurrence formula. In this paper we present further properties, which are proven to comply with various results about classical orthogonal polynomials. In addition, we prove a conjecture concerning the Lebesgue constant's behavior related to the roots of (β,γ)-Chebyshev functions in the corresponding orthogonality interval
Plastic energies in layered superconductors
We estimate the energy cost associated with two pancake vortices colliding in
a layered superconductor. It is argued that this energy sets the plastics
energy scale and is the analogue of the crossing energy for vortices in the
continuum case. The starting point of the calculation is the Lawrence-Doniach
version of the Ginzburg-Landau free energy for type-II superconductors. The
magnetic fields considered are along the c-direction and assumed to be
sufficiently high that the lowest Landau level approximation is valid. For
Bi-2212, where it is know that layering is very important, the results are
radically different from what would have been obtained using a
three-dimensional anisotropic continuum model. We then use the plastic energy
for Bi-2212 to successfully explain recent results from Hellerqvist {\em et
al.}\ on its longitudinal resistance.Comment: 5 Pages Revtex, 4 uuencoded postscript figure
- …