7 research outputs found
âAll the Men Here Have the Peter Pan Syndromeâ They Donât Want to Grow Upâ: Navajo Adolescent Mothersâ Intimate Partner RelationshipsâA 15-Year Perspective
In 1992 and 1995, data were collected from 29 Navajo Native American adolescent mothers. In 2007 and 2008, data were collected from 21 of the original 29 (72%). Guided by feminist family theory, this investigation sought to (a) examine Navajo adolescent mothersâ intimate partner relationships during the transition to parenthood, (b) identify themes in the young mothersâ intimate partnerships across time, and (c) assess participantsâ psychosocial well-being in adulthood. Four themes emerged in the womenâs long-term intimate relationships: limited support, substance abuse, infidelity, and intimate partner violence. Implications of the findings and suggestions for future research are discussed
Microbial respiration in contrasting ocean provinces via high-frequency optode assays
Microbial respiration is a critical component of the marine carbon cycle, determining the proportion of fixed carbon that is subject to remineralization as opposed to being available for export to the ocean depths. Despite its importance, methodological constraints have led to an inadequate understanding of this process, especially in low-activity oligotrophic and mesopelagic regions. Here, we quantify respiration rates as low as 0.2 ”mol O2 L-1 d-1 in contrasting ocean productivity provinces using oxygen optode sensors to identify size-fractionated respiration trends. In the low productivity region of the North Pacific Ocean at Station Papa, surface whole water microbial respiration was relatively stable at 1.2 ”mol O2 L-1 d-1. Below the surface, there was a decoupling between respiration and bacterial production that coincided with increased phytodetritus and small phytoplankton. Size-fractionated analysis revealed that cells <5 ”m were responsible for the majority of the respiration in the Pacific, both at the surface and below the mixed layer. At the North Atlantic Porcupine Abyssal Plain, surface whole water microbial respiration was higher (1.7 ”mol O2 L-1 d-1) than in the Pacific and decreased by 3-fold below the euphotic zone. The Atlantic size-fraction contributions to total respiration shifted on the order of days during the evolution of a phytoplankton bloom with regular storm disturbances. The high-resolution optode method used in the Atlantic captured these significant shifts and is consistent with coinciding stain-based respiration methods and historical site estimates. This study highlights the dynamic nature of respiration across vertical, temporal, and size-fractionated factors, emphasizing the need for sensitive, high-throughput techniques to better understand ocean ecosystem metabolism
EXPORTS Measurements and Protocols for the NE Pacific Campaign
EXport Processes in the Ocean from Remote Sensing (EXPORTS) is a large-scale NASA-led and NSF co-funded field campaign that will provide critical information for quantifying the export and fate of upper ocean net primary production (NPP) using satellite information and state of the art technology
âAll the Men Here Have the Peter Pan Syndromeâ They Donât Want to Grow Upâ: Navajo Adolescent Mothersâ Intimate Partner RelationshipsâA 15-Year Perspective
In 1992 and 1995, data were collected from 29 Navajo Native American adolescent mothers. In 2007 and 2008, data were collected from 21 of the original 29 (72%). Guided by feminist family theory, this investigation sought to (a) examine Navajo adolescent mothersâ intimate partner relationships during the transition to parenthood, (b) identify themes in the young mothersâ intimate partnerships across time, and (c) assess participantsâ psychosocial well-being in adulthood. Four themes emerged in the womenâs long-term intimate relationships: limited support, substance abuse, infidelity, and intimate partner violence. Implications of the findings and suggestions for future research are discussed
Evaluation of new and net community production estimates by multiple ship-based and autonomous observations in the Northeast Pacific Ocean
New production (NP) and net community production (NCP) measurements are often used as estimates of carbon export potential from the mixed layer of the ocean, an important process in the regulation of global climate. Diverse methods can be used to measure NP and NCP, from research vessels, autonomous platforms, and remote sensing, each with its own set of benefits and uncertainties. The various methods are rarely applied simultaneously in a single location, limiting our ability for direct comparisons of the resulting measurements. In this study, we evaluated NP and NCP from thirteen independent datasets collected via in situ, in vitro, and satellite-based methods near Ocean Station Papa during the 2018 Northeast Pacific field campaign of the NASA project EXport Processes in the Ocean from RemoTe Sensing (EXPORTS). Altogether, the datasets indicate that carbon export potential was relatively low (median daily averages between -5.1 and 12.6 mmol C m-2 d-1), with most measurements indicating slight net autotrophy in the region. This result is consistent with NCP estimates based on satellite measurements of sea surface temperature and chlorophyll a. We explored possible causes of discrepancies among methods, including differences in assumptions about stoichiometry, vertical integration, total volume sampled, and the spatiotemporal extent considered. Results of a generalized additive mixed model indicate that the spatial variation across platforms can explain much of the difference among methods. Once spatial variation and temporal autocorrelation are considered, a variety of methods can provide consistent estimates of NP and NCP, leveraging the strengths of each approach
Science goals and mission architecture of the Europa Lander mission concept
© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hand, K., Phillips, C., Murray, A., Garvin, J., Maize, E., Gibbs, R., Reeves, G., San Martin, A., Tan-Wang, G., Krajewski, J., Hurst, K., Crum, R., Kennedy, B., McElrath, T., Gallon, J., Sabahi, D., Thurman, S., Goldstein, B., Estabrook, P., Lee, S. W., Dooley, J. A., Brinckerhoff, W. B., Edgett, K. S., German, C. R., Hoehler, T. M., Hörst, S. M., Lunine, J. I., Paranicas, C., Nealson, K., Smith, D. E., Templeton, A. S., Russell, M. J., Schmidt, B., Christner, B., Ehlmann, B., Hayes, A., Rhoden, A., Willis, P., Yingst, R. A., Craft, K., Cameron, M. E., Nordheim, T., Pitesky, J., Scully, J., Hofgartner, J., Sell, S. W., Barltrop, K. J., Izraelevitz, J., Brandon, E. J., Seong, J., Jones, J.-P., Pasalic, J., Billings, K. J., Ruiz, J. P., Bugga, R. V., Graham, D., Arenas, L. A., Takeyama, D., Drummond, M., Aghazarian, H., Andersen, A. J., Andersen, K. B., Anderson, E. W., Babuscia, A., Backes, P. G., Bailey, E. S., Balentine, D., Ballard, C. G., Berisford, D. F., Bhandari, P., Blackwood, K., Bolotin, G. S., Bovre, E. A., Bowkett, J., Boykins, K. T., Bramble, M. S., Brice, T. M., Briggs, P., Brinkman, A. P., Brooks, S. M., Buffington, B. B., Burns, B., Cable, M. L., Campagnola, S., Cangahuala, L. A., Carr, G. A., Casani, J. R., Chahat, N. E., Chamberlain-Simon, B. K., Cheng, Y., Chien, S. A., Cook, B. T., Cooper, M., DiNicola, M., Clement, B., Dean, Z., Cullimore, E. A., Curtis, A. G., Croix, J-P. de la, Pasquale, P. Di, Dodd, E. M., Dubord, L. A., Edlund, J. A., Ellyin, R., Emanuel, B., Foster, J. T., Ganino, A. J., Garner, G. J., Gibson, M. T., Gildner, M., Glazebrook, K. J., Greco, M. E., Green, W. M., Hatch, S. J., Hetzel, M. M., Hoey, W. A., Hofmann, A. E., Ionasescu, R., Jain, A., Jasper, J. D., Johannesen, J. R., Johnson, G. K., Jun, I., Katake, A. B., Kim-Castet, S. Y., Kim, D. I., Kim, W., Klonicki, E. F., Kobeissi, B., Kobie, B. D., Kochocki, J., Kokorowski, M., Kosberg, J. A., Kriechbaum, K., Kulkarni, T. P., Lam, R. L., Landau, D. F., Lattimore, M. A., Laubach, S. L., Lawler, C. R., Lim, G., Lin, J. Y., Litwin, T. E., Lo, M. W., Logan, C. A., Maghasoudi, E., Mandrake, L., Marchetti, Y., Marteau, E., Maxwell, K. A., Namee, J. B. Mc, Mcintyre, O., Meacham, M., Melko, J. P., Mueller, J., Muliere, D. A., Mysore, A., Nash, J., Ono, H., Parker, J. M., Perkins, R. C., Petropoulos, A. E., Gaut, A., Gomez, M. Y. Piette, Casillas, R. P., Preudhomme, M., Pyrzak, G., Rapinchuk, J., Ratliff, J. M., Ray, T. L., Roberts, E. T., Roffo, K., Roth, D. C., Russino, J. A., Schmidt, T. M., Schoppers, M. J., Senent, J. S., Serricchio, F., Sheldon, D. J., Shiraishi, L. R., Shirvanian, J., Siegel, K. J., Singh, G., Sirota, A. R., Skulsky, E. D., Stehly, J. S., Strange, N. J., Stevens, S. U., Sunada, E. T., Tepsuporn, S. P., Tosi, L. P. C., Trawny, N., Uchenik, I., Verma, V., Volpe, R. A., Wagner, C. T., Wang, D., Willson, R. G., Wolff, J. L., Wong, A. T., Zimmer, A. K., Sukhatme, K. G., Bago, K. A., Chen, Y., Deardorff, A. M., Kuch, R. S., Lim, C., Syvertson, M. L., Arakaki, G. A., Avila, A., DeBruin, K. J., Frick, A., Harris, J. R., Heverly, M. C., Kawata, J. M., Kim, S.-K., Kipp, D. M., Murphy, J., Smith, M. W., Spaulding, M. D., Thakker, R., Warner, N. Z., Yahnker, C. R., Young, M. E., Magner, T., Adams, D., Bedini, P., Mehr, L., Sheldon, C., Vernon, S., Bailey, V., Briere, M., Butler, M., Davis, A., Ensor, S., Gannon, M., Haapala-Chalk, A., Hartka, T., Holdridge, M., Hong, A., Hunt, J., Iskow, J., Kahler, F., Murray, K., Napolillo, D., Norkus, M., Pfisterer, R., Porter, J., Roth, D., Schwartz, P., Wolfarth, L., Cardiff, E. H., Davis, A., Grob, E. W., Adam, J. R., Betts, E., Norwood, J., Heller, M. M., Voskuilen, T., Sakievich, P., Gray, L., Hansen, D. J., Irick, K. W., Hewson, J. C., Lamb, J., Stacy, S. C., Brotherton, C. M., Tappan, A. S., Benally, D., Thigpen, H., Ortiz, E., Sandoval, D., Ison, A. M., Warren, M., Stromberg, P. G., Thelen, P. M., Blasy, B., Nandy, P., Haddad, A. W., Trujillo, L. B., Wiseley, T. H., Bell, S. A., Teske, N. P., Post, C., Torres-Castro, L., Grosso, C. Wasiolek, M. Science goals and mission architecture of the Europa Lander mission concept. The Planetary Science Journal, 3(1), (2022): 22, https://doi.org/10.3847/psj/ac4493.Europa is a premier target for advancing both planetary science and astrobiology, as well as for opening a new window into the burgeoning field of comparative oceanography. The potentially habitable subsurface ocean of Europa may harbor life, and the globally young and comparatively thin ice shell of Europa may contain biosignatures that are readily accessible to a surface lander. Europa's icy shell also offers the opportunity to study tectonics and geologic cycles across a range of mechanisms and compositions. Here we detail the goals and mission architecture of the Europa Lander mission concept, as developed from 2015 through 2020. The science was developed by the 2016 Europa Lander Science Definition Team (SDT), and the mission architecture was developed by the preproject engineering team, in close collaboration with the SDT. In 2017 and 2018, the mission concept passed its mission concept review and delta-mission concept review, respectively. Since that time, the preproject has been advancing the technologies, and developing the hardware and software, needed to retire risks associated with technology, science, cost, and schedule.K.P.H., C.B.P., E.M., and all authors affiliated with the Jet Propulsion Laboratory carried out this research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (grant No. 80NM0018D0004). J.I.L. was the David Baltimore Distinguished Visiting Scientist during the preparation of the SDT report. JPL/Caltech2021