1 research outputs found

    Higgs-otic inflation and string theory

    Get PDF
    We propose that inflation is driven by a (complex) neutral Higgs of the MSSM extension of the SM, in a chaotic-like inflation setting. The SUSY breaking soft term masses are of order 10 12 − 10 13 GeV, which is identified with the inflaton mass scale and is just enough to stabilise the SM Higgs potential. The fine-tuned SM Higgs has then a mass around 126 GeV, in agreement with LHC results. We point out that the required large field excursions of chaotic inflation may be realised in string theory with the (complex) inflaton/Higgs identified with a continuous Wilson line or D-brane position. We show specific examples and study in detail a IIB orientifold with D7-branes at singularities, with SM gauge group and MSSM Higgs sector. In this case the inflaton/Higgs fields correspond to D7-brane positions along a two-torus transverse to them. Masses and monodromy are induced by closed string G 3 fluxes, and the inflaton potential can be computed directly from the DBI+CS action. We show how this action sums over Planck suppressed corrections, which amount to a field dependent rescaling of the inflaton fields, leading to a linear potential in the large field regime. We study the evolution of the two components of the Higgs/inflaton and compute the slow-roll parameters for purely adiabatic perturbations. For large regions of initial conditions slow roll inflation occurs and 50-60 efolds are obtained with r > 0.07, testable in forthcoming experiments. Our scheme is economical in the sense that both EWSB and inflation originate in the same sector of the theory, all inflaton couplings are known and reheating occurs efficiently
    corecore