24 research outputs found

    Hydrothermal Carbonization as a Process to Facilitate the Disposal of Bioplastics

    Get PDF
    Bioplastics are steadily replacing fossil-based plastics due to their renewable origin and biodegradability. However, their end-of-life can be problematic: they are often collected with the organic fraction of municipal solid waste (OFMSW) but can be not satisfactorily biodegradable in plants that treat it, leading to their rejection at the entrance. This work focuses on five different commercial bioplastics employed in the eyewear industry: two based on cellulose acetate, one on galalithe, one on corn starch and one on polyamide. The aim was to assess their treatability via hydrothermal carbonization (HTC), which was never reported in the literature for these materials. Under HTC at 180 and 220 °C for 1 h, four of the tested bioplastics show significant degrees of degradation, leading to the formation of different solid and liquid products, which were respectively characterised according to their elemental composition and pH. The interesting different behaviours may be ascribed to the different compositions and structures of the materials. HTC appears as a viable route to facilitate the degradation of these recalcitrant materials and may be followed by a material recovery or an energetic valorisation through anaerobic digestion or thermochemical pathways, depending on the purity of the waste stream

    Sensitivity Analysis and Validation of a Two Fluid Method (TFM) model for a Spouted Bed

    Get PDF
    This work was funded through the LIFE LIBERNITRATE project (LIFE16 ENV/ES/000419) in the framework of the LIFE+ funding programme. EA and AMF acknowledge the traineeship Erasmus+ grant for Laura Ong.Peer reviewedPostprin

    CFD simulation of a Spouted Bed : comparison between the Discrete Element Method (DEM) and the Two Fluid Method (TFM)

    Get PDF
    This work was funded through the LIFE LIBERNITRATE project (LIFE16 ENV/ES/000419) in the framework of the LIFE+ funding programme. EA and AMF acknowledge the traineeship Erasmus+ grant (2017-1-UK01-KA103-035896) for Nayia Spanachi.Peer reviewedPostprin

    A Comparison of Ansys Fluent and MFiX in Performing CFD-DEM Simulations of a Spouted Bed

    No full text
    The CFD-DEM methodology is a popular tool for the study of fluid\u2013particle systems, and there are several programs that permit using it. In this study, we employed it to simulate a pseudo-2D spouted bed, comparing the performance of the programs Ansys Fluent and MFiX. The results are analysed and commented on in terms of both accuracy and computational efforts. Despite the similarity of the setup, MFiX seems to perform significantly better. The similarities and differences between the two programs are discussed in detail, offering useful insights to researchers regarding the selection of one over the other, depending on the application. The better suitability of the Di Felice drag model is confirmed for the device, while it is shown that the effect of the Magnus lift force may be more limited than was shown in a previous study

    A Discrete Element Method Study of Solids Stress in Cylindrical Columns Using MFiX

    No full text
    Friction phenomena play a key role in discrete element method (DEM) modeling. To analyze this aspect, we employed the open-source program MFiX to perform DEM simulations of cylindrical vertical columns filled with solid particles. These are still associated with and described by the pioneering model by the German engineer H.A. Janssen. By adapting the program’s code, we were able to gather numerous insights on the stress distribution within the solids. The column was filled with different amounts of solids and, after the system had stabilized, we assessed the pressure in the vertical and radial directions and the distribution of the friction force for all particles. An analysis of the bottom pressure for varying particle loads allowed us to infer that the program can correctly predict the expected asymptotical behavior. After a detailed assessment of the behavior of a single system, we performed a sensitivity analysis taking into account several of the variables employed in the simulations. The friction coefficient and filling rate seem to affect the final behavior the most. The program appears suitable to describe friction phenomena in such a static system

    Current Status of Energy Production from Solid Biomass in Southern Italy

    No full text
    This work analyses and discusses data on thermochemical plants in Southern Italy that are fed with solid biomass. The analysis takes into account the biomass availability and potential together with the cost-benefit analysis using technology development and economic indicators (LCOE). A total of 63,762 units have been categorised according to the employed technology and produced energy: power plants for electricity production or cogeneration plants for combined heat and electricity production (53 plants) and thermal units for heat production (63,709 units). The eight regions of the area have noteworthy differences. In terms of electricity generated from solid biomass Calabria is by far the largest producer, followed by Apulia. Sicily, Sardinia and Molise provide lower amounts while Abruzzo, Basilicata and Campania generate almost negligible amounts. Regarding thermal production, Campania and Calabria are the largest producers, but Basilicata, Molise and Abruzzo generate the highest amount per capita. The area is far from fully exploiting its biomass potential, and there are also no district heating grids. Bioenergy can be remarkably competitive, provided that capital costs are relatively low and low-cost biomass is available, as it is the case of Italy. New applications and markets for sub-products (i.e., char, ash) would help in lowering the still not competitive economic indicators (LCOE)

    Mixing Due to Natural Convection in a Hydrothermal Reactor: A CFD Study

    No full text
    The successful design of biomass hydrothermal reactors could be substantially enhanced by computational fluid dynamics (CFD) simulations. However, their performance is still limited by the complexity of the involved physicochemical phenomena and the scarcity of experimental data. This study employs such simulations to analyze the thermo-fluid dynamics of an unstirred batch hydrothermal reactor. By assessing the reactor’s response to a lateral heat source, we show that correctly including various phenomena, such as phase transfers and temperature-dependent properties, enables accurate reproduction of natural convection, providing a more solid base for CFD studies on hydrothermal units. The results provide valuable insights into the reactor’s inner mixing, which for pure water appears adequate despite the absence of stirring. Additionally, we explore two approaches to include a biomass fixed bed or a non-Newtonian sludge. Discussing future efforts needed to make the simulation of such media more established, we show that their presence may indeed hinder mixing, with implications for the products’ quality and safety and for hydrothermal processing control and design

    Current Status of Energy Production from Solid Biomass in North-West Italy

    No full text
    Data on the thermochemical plants fed by solid biomass in the north-west area of Italy (Liguria, Lombardy, Piedmont and Aosta Valley) have been organised, analysed and discussed. Moreover, the biomass availability and potential has been evaluated. A total of 28,167 plants have been categorised according to their typology and output: thermo-electric power plants for electricity production, thermal plants for heat production, cogeneration plants for combined heat and electricity production and district heating installations for local heating purposes. In general, separate observations for the different provinces may be drawn. Liguria stands out as the most evident case of under-exploited biomass potential, followed by Aosta Valley, which, however, is rich in hydroelectricity. Lombardy and Piedmont are more virtuous and have several plants in their territory. The construction of new plants and the upgrade of existing ones may bring noteworthy benefits, as well as the use of added value sub-products to foster circular economy approaches

    A CFD\u2013DEM study of the behaviour of single-solid and binary mixtures in a pyramidal spouted bed

    No full text
    We simulated a lab-scale cold-flow spouted bed through computational fluid dynamics (CFD), coupled with the discrete element method (DEM) for the solid phase, using a commercial CFD program, ANSYS FLUENT 18.0. To limit the computational expense, we tested both a simplified pseudo-2D geometry and a complete 3D geometry. We found that the Haider and Levenspiel drag model is suitable for the pseudo-2D geometry; however, this model does not correctly predict fluidisation in the 3D geometry. Conversely, the Gidaspow drag model behaves accurately in the 3D geometry but overestimates the motion of particles in the pseudo-2D geometry. We studied several single-solid and binary mixtures to assess the reproducibility of segregation phenomena. The pseudo-2D model was able to predict the onset and minimum spouting flow rates of all mixtures with good accuracy. An analysis of the volume fraction contours of the binary mixtures permitted us to confirm that segregation phenomena were correctly predicted at low gas velocities. We showed that segregation decreased as the inlet gas flow rate was increased. Calculations performed in the complete 3D geometry were preliminarily assessed as more reliable but required almost four times as much computational time as those for the pseudo 2D geometry
    corecore