6 research outputs found
Evolution of microparasites in spatially and genetically structured host populations: The example of RHDV infecting rabbits
International audienc
Histo-Blood Group Antigens Act as Attachment Factors of Rabbit Hemorrhagic Disease Virus Infection in a Virus Strain-Dependent Manner
Rabbit Hemorrhagic disease virus (RHDV), a calicivirus of the Lagovirus genus, and responsible for rabbit hemorrhagic disease (RHD), kills rabbits between 48 to 72 hours post infection with mortality rates as high as 50–90%. Caliciviruses, including noroviruses and RHDV, have been shown to bind histo-blood group antigens (HBGA) and human non-secretor individuals lacking ABH antigens in epithelia have been found to be resistant to norovirus infection. RHDV virus-like particles have previously been shown to bind the H type 2 and A antigens. In this study we present a comprehensive assessment of the strain-specific binding patterns of different RHDV isolates to HBGAs. We characterized the HBGA expression in the duodenum of wild and domestic rabbits by mass spectrometry and relative quantification of A, B and H type 2 expression. A detailed binding analysis of a range of RHDV strains, to synthetic sugars and human red blood cells, as well as to rabbit duodenum, a likely gastrointestinal site for viral entrance was performed. Enzymatic cleavage of HBGA epitopes confirmed binding specificity. Binding was observed to blood group B, A and H type 2 epitopes in a strain-dependent manner with slight differences in specificity for A, B or H epitopes allowing RHDV strains to preferentially recognize different subgroups of animals. Strains related to the earliest described RHDV outbreak were not able to bind A, whereas all other genotypes have acquired A binding. In an experimental infection study, rabbits lacking the correct HBGA ligands were resistant to lethal RHDV infection at low challenge doses. Similarly, survivors of outbreaks in wild populations showed increased frequency of weak binding phenotypes, indicating selection for host resistance depending on the strain circulating in the population. HBGAs thus act as attachment factors facilitating infection, while their polymorphism of expression could contribute to generate genetic resistance to RHDV at the population level
Serological evidence for a non-protective RHDV-like virus
The data were recorded during a Rabbit haemorrhagic disease outbreak that occurred in France in 2001 in a wild population of rabbits that we have been monitoring since 2000. These data suggested the existence of non-protective antibodies due to a putative RHDV-like virus. Twenty-one blood and 22 liver samples were taken from the 26 corpses of recently dead rabbits that were found. RHDV was found in all liver samples. A first screening for RHD antibodies, carried out using an ELISA based on the detection of VP60-RHDV antigen, showed that 20 of the rabbits were seropositive. Moreover, we determined antibody titres for 13 of these 20 seropositive samples. All were 1/400. Such titres normally indicate antibody levels sufficient to confer protection to all known RHDV or RHDV-like strains. For 16 samples, we determined whether these rabbits had died of a chronic or an acute form of the disease, by employing monoclonal antibody (Mabs) – based differential ELISA. All had died of an acute form of RHD. Because the antibodies detected by this VP60-ELISA test are known to appear 5–6 days after infection and since acute RHD generally kills the rabbits 2–3 days after infection, we assumed that the detected antibodies must have been present before the exposure to the virus that killed these rabbits. A second detection of antibodies was made with Mabs that are specific for RHDV. The results were negative, showing that the antibodies detected with the VP60 ELISA test were not specific for RHDV. We sequenced a portion of the VP60 gene of viruses isolated in 17 rabbits. All RHDV isolates were very similar to the RHDV strains commonly isolated in France during this period, suggesting that this viral strain was not a putative variant that is not neutralised by antibodies. Therefore we conclude that the detected antibodies were probably due to a RHDV-like virus that induces the production of detectable but non-protective antibodies
Possible origin of European rabbit (<i>O</i>. <i>cuniculus</i>) lagoviruses according to the hypothesis of a species jump.
<p>A) Lagoviruses that may share common ancestors following several species jump(s), B) Nonpathogenic viruses that have evolved in European rabbit for a long time. Phylogenetic tree (Neighbor-joining method) derived from 303 rabbit lagovirus sequences of the VP60 gene available on public databases (May 2015). The pathogenic RHDV, RHDVa, RHDV2, and the nonpathogenic RCV-A1 branches are collapsed; the name of the leporid species where these strains were isolated is given in brackets. X96868_RCV/1996-Italy, GQ166866_MRCV/2000-USA, EF558587_Ashington/1998-UK, and AM268419_06-11/2006-France are nonpathogenic strains isolated in the European rabbit. Percentage greater than 70% of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) are given at major branch nodes. The EBHSV strain GD (Z69620) was used as an outgroup to root the tree. Similar clustering was observed in several recent works [<a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005087#ppat.1005087.ref063" target="_blank">63</a>,<a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005087#ppat.1005087.ref064" target="_blank">64</a>,<a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005087#ppat.1005087.ref066" target="_blank">66</a>,<a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005087#ppat.1005087.ref070" target="_blank">70</a>,<a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005087#ppat.1005087.ref074" target="_blank">74</a>].</p