3 research outputs found
Modeling the creep behavior of GRFP truss structures with Positional Finite Element Method
<div><p>Abstract This paper presents the development of a formulation, based on Positional Finite Element Method, to describe the viscoelastic mechanical behavior of space trusses. The numerical method used was chosen due to its efficiency in the applications concerning nonlinear numerical analyses. The formulation describes the positional variation over time under constant stress state (creep). The objective is to provide a way to quantify the creep behavior for space truss structures and thus contribute to the encouragement of GFRP usage in such structural components. Time-dependent behavior of such materials is one the most important factors for their use in design of structures, demanding studies about the deformations expected within the operational life of the structural systems. To perform this study, the proposed methodology considers a standard solid rheological model to describe stress-strain time-dependent law. This model is implemented in the formulation for quantify the total strain energy. The effects of the model parameters in the mechanical response of the structure with accentuated geometric nonlinearity were presented. In this analysis, it was possible to identify the influence of the elastic and the viscous moduli on the creep response. Model calibration was performed using test data obtained from literature and a GFRP transmission line tower cross-arm was simulated to predict the evolution of displacements under real operational loads. From the results, it was possible to observe a fast evolution of displacements due to the creep effect in the first 7,500 h. This increase was close to 0.6% in relation to the displacement obtained in the elastic behavior. The presented methodology provided a simple and efficient way to quantify the creep phenomenon in viscoelastic GFRP composites truss structures, as can be seen in the developed analyses.</p></div
A Simple FEM Formulation Applied to Nonlinear Problems of Impact with Thermomechanical Coupling
<div><p>Abstract The thermal effects of problems involving deformable structures are essential to describe the behavior of materials in feasible terms. Verifying the transformation of mechanical energy into heat it is possible to predict the modifications of mechanical properties of materials due to its temperature changes. The current paper presents the numerical development of a finite element method suitable for nonlinear structures coupled with thermomechanical behavior; including impact problems. A simple and effective alternative formulation is presented, called FEM positional, to deal with the dynamic nonlinear systems. The developed numerical is based on the minimum potential energy written in terms of nodal positions instead of displacements. The effects of geometrical, material and thermal nonlinearities are considered. The thermodynamically consistent formulation is based on the laws of thermodynamics and the Helmholtz free-energy, used to describe the thermoelastic and the thermoplastic behaviors. The coupled thermomechanical model can result in secondary effects that cause redistributions of internal efforts, depending on the history of deformation and material properties. The numerical results of the proposed formulation are compared with examples found in the literature.</p></div
Relationship between head posture and lumbar curve in a sitting position: a biomechanical study
<div><p>Abstract Introduction: The sitting position routinely used for a wide variety of tasks increases the potential of developing forward head posture, which can seriously compromise the health of different systems in the human body. Objective: A static equilibrium analysis was conducted, comparing the position of the head with the lumbar curve in three different sitting positions. Methods: The approximate force and flexion moment of the head extensor muscles in static equilibrium was calculated in each of the following positions: (A) without a backrest; (B) using a backrest with a 100° tilt angle; (C) using a 100° tilted backrest associated with a cylindrical lumbar support cushion at the level of the L3 vertebra. Results: The C7-tragus angles were 43°, 50° and 52°; Frankfort horizontal plane (FH) angles were 5°, 9° and 9°; force of the head extensor muscles was 53.0N, 59.7N and 43.5N and flexion moments were 2.60Nm, 2.05Nm and 1.78Nm, in positions A, B and C, respectively. Conclusion: The results revealed that the sitting position using a 100° tilted backrest and lumbar support with the smallest L3-tragus horizontal distance required less effort by the head and neck extensor muscles to retain the head in equilibrium. This study demonstrated the need to preserve the physiology of the lumbar spine, characterized by the position of the L3 vertebra, in order to ensure good head position.</p></div