19 research outputs found

    Role of the NO/K ATP pathway in the protective effect of a sulfated-polysaccharide fraction from the algae Hypnea musciformis against ethanol-induced gastric damage in mice

    Get PDF
    Seaweeds are the most abundant source of polysaccharides such as alginates and agar, as well as carrageenans. This study aimed to investigate the gastroprotective activity and the mechanism underlying this activity of a sulfated-polysaccharide fraction extracted from the algae Hypnea musciformis (Wulfen) J.V. Lamour. (Gigartinales-Rhodophyta). Mice were treated with sulfated-polysaccharide fraction (3, 10, 30, and 90 mg/kg, p.o.) and, after 30 min, they were administered 50% ethanol (0.5 mL/25 g, p.o.). After 1 h, gastric damage was measured using a planimeter. In addition, samples of the stomach tissue were obtained for histopathological examination and for assays to determine the glutathione and malondialdehyde levels. Other groups of mice were pretreated with N G-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg, i.p.), aminoguanidine (100 mg/kg, i.p.), or glibenclamide (10 mg/kg, i.p.). After 30 min to the aminoguanidine group and 1 h to the other groups, sulfated-polysaccharide fraction (30 mg/kg, p.o.) was administered and gastric damage was induced as described above. Sulfated-polysaccharide fraction prevented ethanol-induced gastric injury in a dose-dependent manner. However, treatment with L-NAME or glibenclamide reversed this gastroprotective effect. Administration of aminoguanidine did not influence the effect of sulfated-polysaccharide fraction. Our results suggest that sulfated-polysaccharide fraction exerts a protective effect against ethanol-induced gastric damage via activation of the NO/K ATP pathway

    Role of cytokines (TNF-alpha, IL-1 beta and KC) in the pathogenesis of CPT-11-induced intestinal mucositis in mice: effect of pentoxifylline and thalidomide

    No full text
    Introduction Irinotecan (CPT-11) is an inhibitor of DNA topoisomerase I and is clinically effective against several cancers. A major toxic effect of CPT-11 is delayed diarrhea; however, the exact mechanism by which the drug induces diarrhea has not been established. Purpose Elucidate the mechanisms of induction of delayed diarrhea and determine the effects of the cytokine production inhibitor pentoxifylline (PTX) and thalidomide (TLD) in the experimental model of intestinal mucositis, induced by CPT-11. Materials and methods Intestinal mucositis was induced in male Swiss mice by intraperitoneal administration of CPT-11 (75 mg/kg) daily for 4 days. Animals received subcutaneous PTX (1.7, 5 and 15 mg/kg) or TLD (15, 30, 60 mg/kg) or 0.5 ml of saline daily for 5 and 7 days, starting 1 day before the first CPT-11 injection. The incidence of delayed diarrhea was monitored by scores and the animals were sacrificed on the 5th and 7th experimental day for histological analysis, immunohistochemistry for TNF-alpha and assay of myeloperoxidase (MPO) activity, tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta) and KC ELISA. Results CPT-11 caused significant diarrhea, histopathological alterations (inflammatory cell infiltration, loss of crypt architecture and villus shortening) and increased intestinal tissue MPO activity, TNF-alpha, IL-1 beta and KC level and TNF-alpha immuno-staining. PTX inhibited delayed diarrhea of mice submitted to intestinal mucositis and reduced histopathological damage, intestinal MPO activity, tissue level of TNF-alpha, IL-1 beta and KC and TNF-alpha immuno-staining. TLD significantly reduced the lesions induced by CPT-11 in intestinal mucosa, decreased MPO activity, TNF-alpha tissue level and TNF-alpha immuno-staining, but did not reduce the severity of diarrhea. Conclusion These results suggest an important role of TNF-alpha, IL-1 beta and KC in the pathogenesis of intestinal mucositis induced by CPT-11

    Role of platelet-activating factor in the pathogenesis of 5-fluorouracil-induced intestinal mucositis in mice

    No full text
    Gastrointestinal mucositis is a common side effect of cancer chemotherapy. Platelet-activating factor (PAF) is produced during gut inflammation. There is no evidence that PAF participates in antineoplastic-induced intestinal mucositis. This study evaluated the role of PAF in 5-fluorouracil (5-FU)-induced intestinal mucositis using a pharmacological approach and PAF receptor knockout mice (PAFR(-/-)). Wild-type mice or PAFR(-/-) mice were treated with 5-FU (450 mg/kg, i.p.). Other mice were treated with saline or BN52021 (20 mg/kg, s.c.), an antagonist of the PAF receptor, once daily followed by 5-FU administration. After the third day of treatment, animals were sacrificed and tissue samples from the duodenum were removed for morphologic evaluation. In addition, myeloperoxidase activity and the cytokine concentration were measured. 5-FU treatment decreased the duodenal villus height/crypt depth ratio, increased MPO activity, and increased the concentration of TNF-alpha, IL-1 beta and KC in comparison with saline-treated animals. In PAFR(-/-) mice and PAFR antagonist-treated mice, 5-FU-dependent intestinal damage was reduced and a decrease in duodenal villus height/crypt depth ratio was attenuated. However, the 5-FU-dependent increase in duodenum MPO activity was not affected. Without PAFR activation, 5-FU treatment did not increase the TNF-alpha, IL-1 beta and KC concentration. In conclusion, our study establishes the role of PAFR activation in 5-FU-induced intestinal mucositis. This study implicates treatment with PAFR antagonists as novel therapeutic strategy for this condition.Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq-Brazil)CNP

    Hydrogen Sulfide Prevents Ethanol-Induced Gastric Damage in Mice: Role of ATP-Sensitive Potassium Channels and Capsaicin-Sensitive Primary Afferent Neurons

    No full text
    The aim of this study was to evaluate the protective effect of hydrogen sulfide (H(2)S) on ethanol-induced gastric lesions in mice and the influence of ATP-sensitive potassium (K(ATP)) channels, capsaicin-sensitive sensory afferent neurons, and transient receptor potential vanilloid (TRPV) 1 receptors on such an effect. Saline and L-cysteine alone or with propargylglycine, sodium hydrogen sulfide (NaHS), or Lawesson`s reagent were administrated for testing purposes. For other experiments, mice were pretreated with glibenclamide, neurotoxic doses of capsaicin, or capsazepine. Afterward, mice received L-cysteine, NaHS, or Lawesson`s reagent. After 30 min, 50% ethanol was administrated by gavage. After 1 h, mice were sacrificed, and gastric damage was evaluated by macroscopic and microscopic analyses. L-Cysteine, NaHS, and Lawesson`s reagent treatment prevented ethanol-induced macroscopic and microscopic gastric damage in a dose-dependent manner. Administration of propargylglycine, an inhibitor of endogenous H(2)S synthesis, reversed gastric protection induced by L-cysteine. Glibenclamide reversed L-cysteine, NaHS, or Lawesson`s reagent gastroprotective effects against ethanol-induced macroscopic damage in a dose-dependent manner. Chemical ablation of sensory afferent neurons by capsaicin reversed gastroprotective effects of L-cysteine or H(2)S donors (NaHS or Lawesson`s reagent) in ethanol-induced macroscopic gastric damage. Likewise, in the presence of the TRPV1 antagonist capsazepine, the gastroprotective effects of L-cysteine, NaHS, or Lawesson`s reagent were also abolished. Our results suggest that H(2)S prevents ethanol-induced gastric damage. Although there are many mechanisms through which this effect can occur, our data support the hypothesis that the activation of K(ATP) channels and afferent neurons/TRPV1 receptors is of primary importance.National Counsel of Technological and Scientific Development of Brazil (CNPq Conselho Nacional de Desenvolvimento Cientifico e Tecnologico

    Gastroprotective effect of heme-oxygenase 1/biliverdin/CO pathway in ethanol-induced gastric damage in mice

    No full text
    Our objective was to evaluate the role of heme-oxygenase 1 (HO-1)/biliverdin/CO pathway in gastric defense against ethanol-induced gastric damage in mice. Mice were pre-treated with saline, hemin (HO-1 inducer), biliverdin (HO-1 product), dimanganese decacarbonyl (DMDC, CO donor) or zinc protoporphyrin IX (ZnPP IX, HO-1 antagonist). Another group received soluble guanylate cyclase (sGC) inhibitor (ODQ) 30 min before hemin, biliverdin or DMDC. After 30 min, gastric damage was induced by ethanol. After one hour, rats were sacrificed. Gastric lesions were measured using a computer planimetry program, and gastric corpus pieces were assayed for malonylaldehyde (MDA), glutathione (GSH) or bilirubin. HO-1 expression was determined after saline or ethanol administration by polymerase chain reaction (PCR) or immunohistochemistry. Ethanol (25% or 50%) induced gastric damage, increased MDA levels and reduced GSH in the gastric tissue. Ethanol 50% increased HO-1 mRNA transcripts, HO-1 immunoreactivity, and bilirubin concentration in gastric mucosa. Pre-treatment with hemin reduced gastric damage and MDA formation and increased GSH concentration in the gastric mucosa. ZnPP IX amplified the ethanol-induced gastric lesion, increased MDA formation and decreased GSH concentration in gastric mucosa. Biliverdin and DMDC reduced gastric damage and MDA formation and increased GSH concentration in the gastric tissue. ODQ completely abolished the DMDC protective gastric effect However, effects of hemin or biliverdin did not change with ODQ treatment. Our results suggest that HO-1/biliverdin/CO pathway plays a protective role against ethanol-induced gastric damage through mechanisms that can be dependent (CO) or independent (biliverdin) of sGC activation. (C) 2010 Elsevier B.V. All rights reserved.CNPq (Brazil

    Gastrointestinal dysmotility in 5-fluorouracil-induced intestinal mucositis outlasts inflammatory process resolution

    No full text
    Aim To evaluate gastrointestinal motility during 5-fluorouracil (5-FU)-induced intestinal mucositis. Materials and methods Wistar rats received 5-FU (150 mg kg(-1), i.p.) or saline. After the 1st, 3rd, 5th, 15th and 30th day, sections of duodenum, jejunum and ileum were removed for assessment of epithelial damage, apoptotic and mitotic indexes, MPO activity and GSH concentration. In order to study gastrointestinal motility, on the 3rd or 15th day after 5-FU treatment, gastric emptying in vivo was measured by scintilographic method, and stomach or duodenal smooth muscle contractions induced by CCh were evaluated in vitro. Results On the third day of treatment, 5-FU induced a significant villi shortening, an increase in crypt depth and intestinal MPO activity and a decrease in villus/crypt ratio and GSH concentration. On the first day after 5-FU there was an increase in the apoptosis index and a decrease in the mitosis index in all intestinal segments. After the 15th day of 5-FU treatment, a complete reversion of all these parameters was observed. There was a delay in gastric emptying in vivo and a significant increase in gastric fundus and duodenum smooth muscle contraction, after both the 3rd and 15th day. Conclusions 5-FU-induced gastrointestinal dysmotility outlasts intestinal mucositis.CNPq (Brazil

    A Sulfated-Polysaccharide Fraction from Seaweed Gracilaria birdiae Prevents Naproxen-Induced Gastrointestinal Damage in Rats

    Get PDF
    Red seaweeds synthesize a great variety of sulfated galactans. Sulfated polysaccharides (PLSs) from seaweed are comprised of substances with pharmaceutical and biomedical potential. The aim of the present study was to evaluate the protective effect of the PLS fraction extracted from the seaweed Gracilaria birdiae in rats with naproxen-induced gastrointestinal damage. Male Wistar rats were pretreated with 0.5% carboxymethylcellulose (control group—vehicle) or PLS (10, 30, and 90 mg/kg, p.o.) twice daily (at 09:00 and 21:00) for 2 days. After 1 h, naproxen (80 mg/kg, p.o.) was administered. The rats were killed on day two, 4 h after naproxen treatment. The stomachs were promptly excised, opened along the greater curvature, and measured using digital calipers. Furthermore, the guts of the animals were removed, and a 5-cm portion of the small intestine (jejunum and ileum) was used for the evaluation of macroscopic scores. Samples of the stomach and the small intestine were used for histological evaluation, morphometric analysis and in assays for glutathione (GSH) levels, malonyldialdehyde (MDA) concentration, and myeloperoxidase (MPO) activity. PLS treatment reduced the macroscopic and microscopic naproxen-induced gastrointestinal damage in a dose-dependent manner. Our results suggest that the PLS fraction has a protective effect against gastrointestinal damage through mechanisms that involve the inhibition of inflammatory cell infiltration and lipid peroxidation
    corecore