3 research outputs found

    Short-term effect of sacubitril/valsartan on endothelial dysfunction and arterial stiffness in patients with chronic heart failure

    Get PDF
    Heart failure (HF) is associated to endothelial dysfunction that promotes the increase of arterial stiffness thus augmenting myocardial damage. Sacubitril/Valsartan is used in the treatment of HF reduced ejection fraction (HFrEF) and has been proven effective in reducing cardiovascular disease (CVD) progression and all-cause mortality. The aim of this study was to evaluate the effect of Sacubitril/Valsartan on endothelial dysfunction, arterial stiffness, oxidative stress levels and platelets activation in patients with HFrEF, at baseline and after 6 months of treatment. We enrolled 100 Caucasian patients. Endothelial function was evaluated by the reactive hyperemia index (RHI) and arterial stiffness (AS) by the measurement of carotid-femoral pulse wave velocity (PWV), augmentation pressure (AP) and augmentation index (AI). At baseline, among enrolled outpatients, 43% showed a NYHA class II and 57% a NYHA class III. At 6 months, there was a significant improvement of several hemodynamic, clinical and metabolic parameters with a significant reduction in oxidative stress indices such as 8-isoprostane (p < 0.0001) and Nox-2 (p < 0.0001), platelets activity biomarkers such as sP-selectin (p < 0.0001) and Glycoprotein-VI (p < 0.0001), and inflammatory indices. Moreover, we observed a significant improvement in arterial stiffness parameters and in endothelial function indices. Our study demonstrated that 6 months treatment with Sacubitril/Valsartan, in patients with HFrEF, improves endothelial dysfunction and arterial stiffness, by reducing oxidative stress, platelet activation and inflammation circulating biomarkers, without adverse effects

    Uric Acid and Vascular Damage in Essential Hypertension: Role of Insulin Resistance

    No full text
    Increased levels of uric acid (UA) have been shown to be correlated with many clinical conditions. Uric acid may adversely affect the insulin signalling pathway inducing insulin resistance (IR). Several studies report the association between arterial stiffness (AS), an early indicator of atherosclerosis, and UA. The purpose of the present study was to evaluate the association between UA and AS, considering the potential role of IR. We enrolled 1114 newly diagnosed, never-treated hypertensive patients. Insulin resistance was assessed by the homeostatic model assessment (HOMA) index. Arterial stiffness was evaluated as the measurement of the carotid-femoral pulse wave velocity (PWV). The study cohort was divided into subgroups, according to increasing tertiles of UA. The mean values of UA were 5.2 ± 1.6 mg/dL in the overall population. Pulse wave velocity was linearly correlated with UA (p < 0.0001), HOMA (p < 0.0001), high sensitivity C-reactive protein (p < 0.0001), systolic blood pressure (p < 0.0001) and LDL cholesterol (p = 0.005). Uric acid was the strongest predictor of PWV and was associated with the highest risk for increased AS. The interaction analysis showed that the joint effect of increased UA and HOMA was significantly higher than that expected in the absence of interaction under the additive model, indicating that the two biomarkers synergically interacted for promoting vascular damage. Our data showed that UA interacted with IR to increase AS in a large cohort of newly diagnosed, never-treated hypertensive patients
    corecore