23 research outputs found
A novel bioluminescent NanoLuc yeast-estrogen screen biosensor (nanoYES) with a compact wireless camera for effect-based detection of endocrine-disrupting chemicals
The presence of chemicals with estrogenic activity in surface, groundwater, and drinking water poses serious concerns for potential threats to human health and aquatic life. At present, no sensitive portable devices are available for the rapid monitoring of such contamination. Here, we propose a cell-based mobile platform that exploits a newly developed bioluminescent yeast-estrogen screen (nanoYES) and a low-cost compact camera as light detector. Saccharomyces cerevisiae cells were genetically engineered with a yeast codon-optimized variant of NanoLuc luciferase (yNLucP) under the regulation of human estrogen receptor ñ activation. Ready-to-use 3D-printed cartridges with immobilized cells were prepared by optimizing a new procedure that enables to produce alginate slices with good reproducibility. A portable device was obtained exploiting a compact camera and wireless connectivity enabling a rapid and quantitative evaluation (1-h incubation at room temperature) of total estrogenic activity in small sample volumes (50Ă ĂÂŒL) with a LOD of 0.08Ă nM for 17ĂÂČ-estradiol. The developed portable analytical platform was applied for the evaluation of water samples spiked with different chemicals known to have estrogen-like activity. Thanks to the high sensitivity of the newly developed yeast biosensor and the possibility to wireless connect the camera with any smartphone model, the developed configuration is more versatile than previously reported smartphone-based devices, and could find application for on-site analysis of endocrine disruptors. [Figure not available: see fulltext.]
Lipoprotein(a) Genotype Influences the Clinical Diagnosis of Familial Hypercholesterolemia
Background Evidence suggests that LPA risk genotypes are a possible contributor to the clinical diagnosis of familial hypercholesterolemia (FH). This study aimed at determining the prevalence of LPA risk variants in adult individuals with FH enrolled in the Italian LIPIGEN (Lipid Transport Disorders Italian Genetic Network) study, with (FH/M+) or without (FH/M-) a causative genetic variant. Methods and ResultsAn lp(a) [lipoprotein(a)] genetic score was calculated by summing the number risk-increasing alleles inherited at rs3798220 and rs10455872 variants. Overall, in the 4.6% of 1695 patients with clinically diagnosed FH, the phenotype was not explained by a monogenic or polygenic cause but by genotype associated with high lp(a) levels. Among 765 subjects with FH/M- and 930 subjects with FH/M+, 133 (17.4%) and 95 (10.2%) were characterized by 1 copy of either rs10455872 or rs3798220 or 2 copies of either rs10455872 or rs3798220 (lp(a) score >= 1). Subjects with FH/M- also had lower mean levels of pretreatment low-density lipoprotein cholesterol than individuals with FH/M+ (t test for difference in means between FH/M- and FH/M+ groups <0.0001); however, subjects with FH/M- and lp(a) score >= 1 had higher mean (SD) pretreatment low-density lipoprotein cholesterol levels (223.47 [50.40] mg/dL) compared with subjects with FH/M- and lp(a) score=0 (219.38 [54.54] mg/dL for), although not statistically significant. The adjustment of low-density lipoprotein cholesterol levels based on lp(a) concentration reduced from 68% to 42% the proportion of subjects with low-density lipoprotein cholesterol level >= 190 mg/dL (or from 68% to 50%, considering a more conservative formula). ConclusionsOur study supports the importance of measuring lp(a) to perform the diagnosis of FH appropriately and to exclude that the observed phenotype is driven by elevated levels of lp(a) before performing the genetic test for FH
Super-Stable MetalâOrganic Framework (MOF)/Luciferase Paper-Sensing Platform for Rapid ATP Detection
Adenosine triphosphate (ATP) determination has been used for many decades to assess microbial contamination for hygiene monitoring in different locations and workplace environments. Highly sophisticated methods have been reported, yet commercially available kits rely on a luciferaseâluciferin system and require storage and shipping at controlled temperatures (+4 or â20 °C). The applicability of these systems is limited by the need for a secure cold chain, which is not always applicable, especially in remote areas or low-resource settings. In this scenario, easy-to-handle and portable sensors would be highly valuable. Prompted by this need, we developed a bioluminescence paper biosensor for ATP monitoring in which a new luciferase mutant was combined with a metalâorganic framework (MOF); i.e., zeolitic imidazolate framework-8 (ZIF-8). A paper biosensor was developed, ZIF-8@Luc paper sensor, and interfaced with different portable light detectors, including a silicon photomultiplier (SiPM) and smartphones. The use of ZIF-8 not only provided a five-fold increase in the bioluminescence signal, but also significantly improved the stability of the sensor, both at +4 and +28 °C. The ATP content in complex biological matrices was analyzed with the ZIF-8@Luc paper sensor, enabling detection down to 7 Ă 10â12 moles of ATP and 8 Ă 10â13 moles in bacterial lysates and urine samples, respectively. The ZIF-8@Luc sensor could, therefore, be applied in many fields in which ATP monitoring is required such as the control of microbial contamination
Nanoscale Phase Separation and Lattice Complexity in VO2: The MetalâInsulator Transition Investigated by XANES via Auger Electron Yield at the Vanadium L23-Edge and Resonant Photoemission
Among transition metal oxides, VO2 is a particularly interesting and challenging correlated electron material where an insulator to metal transition (MIT) occurs near room temperature. Here we investigate a 16 nm thick strained vanadium dioxide film, trying to clarify the dynamic behavior of the insulator/metal transition. We measured (resonant) photoemission below and above the MIT transition temperature, focusing on heating and cooling effects at the vanadium L23-edge using X-ray Absorption Near-Edge Structure (XANES). The vanadium L23-edges probe the transitions from the 2p core level to final unoccupied states with 3d orbital symmetry above the Fermi level. The dynamics of the 3d unoccupied states both at the L3- and at the L2-edge are in agreement with the hysteretic behavior of this thin film. In the first stage of the cooling, the 3d unoccupied states do not change while the transition in the insulating phase appears below 60 °C. Finally, Resonant Photoemission Spectra (ResPES) point out a shift of the Fermi level of ~0.75 eV, which can be correlated to the dynamics of the 3d// orbitals, the electronâelectron correlation, and the stability of the metallic state