6 research outputs found

    Learning mutational graphs of individual tumour evolution from single-cell and multi-region sequencing data

    Full text link
    Background. A large number of algorithms is being developed to reconstruct evolutionary models of individual tumours from genome sequencing data. Most methods can analyze multiple samples collected either through bulk multi-region sequencing experiments or the sequencing of individual cancer cells. However, rarely the same method can support both data types. Results. We introduce TRaIT, a computational framework to infer mutational graphs that model the accumulation of multiple types of somatic alterations driving tumour evolution. Compared to other tools, TRaIT supports multi-region and single-cell sequencing data within the same statistical framework, and delivers expressive models that capture many complex evolutionary phenomena. TRaIT improves accuracy, robustness to data-specific errors and computational complexity compared to competing methods. Conclusions. We show that the application of TRaIT to single-cell and multi-region cancer datasets can produce accurate and reliable models of single-tumour evolution, quantify the extent of intra-tumour heterogeneity and generate new testable experimental hypotheses

    Additional file 3: of A first immunohistochemistry study of transketolase and transketolase-like 1 expression in canine hyperplastic and neoplastic mammary lesions

    No full text
    Graphical representation (box-plot) of TKTL1 immunohistochemical evaluation. Immunoreactivity scores (IRS) of normal mammary glands (n = 6), ductal hyperplasias (n = 3), benign tumors (n = 11) and carcinomas (n = 17), with statistical differences between lesions. Different letters (a, b, c, d) indicate significant differences (P < 0.05), red line (median values), Kruskal-Wallis ANOVA followed by Dunn’s post hoc test. (TIF 970 kb

    Additional file 2: Figure S1. of Potential and active functions in the gut microbiota of a healthy human cohort

    No full text
    Principal component analysis plots related to taxonomic and functional features. MG data are in blue, while MP data are in red. Each dot (with different shape) represents a different human subject. (A) phyla; (B) genera; (C) KOGs; (D) KOG-phylum combinations. (PNG 2001 kb

    Unipept Desktop 2.0: Construction of Targeted Reference Protein Databases for Metaproteogenomics Analyses

    No full text
    Unipept Desktop 2.0 is the most recent iteration of the Unipept Desktop tool that adds support for the analysis of metaproteogenomics datasets. Unipept Desktop now supports the automatic construction of targeted protein reference databases that only contain proteins (originating from the UniProtKB resource) associated with a predetermined list of taxa. This improves both the taxonomic and functional resolution of a metaproteomic analysis and yields several technical advantages. By limiting the proteins present in a reference database, it is also possible to perform (meta)proteogenomics analyses. Since the protein reference database resides on the user’s local machine, they have complete control over the database used during an analysis. Data no longer need to be transmitted over the Internet, decreasing the time required for an analysis and better safeguarding privacy-sensitive data. As a proof of concept, we present a case study in which a human gut metaproteome dataset is analyzed with Unipept Desktop 2.0 using different targeted databases based on matched 16S rRNA gene sequencing data

    Unipept Desktop 2.0: Construction of Targeted Reference Protein Databases for Metaproteogenomics Analyses

    No full text
    Unipept Desktop 2.0 is the most recent iteration of the Unipept Desktop tool that adds support for the analysis of metaproteogenomics datasets. Unipept Desktop now supports the automatic construction of targeted protein reference databases that only contain proteins (originating from the UniProtKB resource) associated with a predetermined list of taxa. This improves both the taxonomic and functional resolution of a metaproteomic analysis and yields several technical advantages. By limiting the proteins present in a reference database, it is also possible to perform (meta)proteogenomics analyses. Since the protein reference database resides on the user’s local machine, they have complete control over the database used during an analysis. Data no longer need to be transmitted over the Internet, decreasing the time required for an analysis and better safeguarding privacy-sensitive data. As a proof of concept, we present a case study in which a human gut metaproteome dataset is analyzed with Unipept Desktop 2.0 using different targeted databases based on matched 16S rRNA gene sequencing data
    corecore