48 research outputs found

    Three years pilot of spinal muscular atrophy newborn screening turned into official program in Southern Belgium.

    Full text link
    Three new therapies for spinal muscular atrophy (SMA) have been approved by the United States Food and Drug Administration and the European Medicines Agency since 2016. Although these new therapies improve the quality of life of patients who are symptomatic at first treatment, administration before the onset of symptoms is significantly more effective. As a consequence, newborn screening programs have been initiated in several countries. In 2018, we launched a 3-year pilot program to screen newborns for SMA in the Belgian region of Liège. This program was rapidly expanding to all of Southern Belgium, a region of approximately 55,000 births annually. During the pilot program, 136,339 neonates were tested for deletion of exon 7 of SMN1, the most common cause of SMA. Nine SMA cases with homozygous deletion were identified through this screen. Another patient was identified after presenting with symptoms and was shown to be heterozygous for the SMN1 exon 7 deletion and a point mutation on the opposite allele. These ten patients were treated. The pilot program has now successfully transitioned into the official neonatal screening program in Southern Belgium. The lessons learned during implementation of this pilot program are reported

    Contribution to the photophysical and photochemical study of rutheniumII-TAP complexes and their conjugates in the scope of applications in molecular biology

    No full text
    Les complexes polyazaaromatiques de ruthéniumII, et en particulier le [Ru(bpy)3]2+, ont fait l’objet de nombreuses études fondamentales en photochimie et photophysique. Du fait de ses propriétés photophysiques, et entre autres grâce à son temps de vie de luminescence relativement long, le [Ru(bpy)3]2+ est devenu un composé modèle en photophysique. Dès les années 1970, et principalement grâce aux travaux de T.J. Meyer, la photophysique du [Ru(bpy)3]2+ a été étudiée en détail afin de permettre l’élaboration d’un modèle photophysique qui peut être valablement étendu aux autres complexes polyazaaromatiques de RuII. La caractérisation du complexe [Ru(bpy)2(dppz)]2+ et de ses interactions avec l’ADN a, elle, promu l’étude des complexes de RuII en présence de biomolécules et a encouragé la recherche pour l’utilisation de complexes de ruthénium comme photosondes en biochimie.Dans ce cadre, le laboratoire de Chimie Organique et Photochimie de l’ULB s’est attaché au développement de complexes polyazaaromatiques de ruthéniumII se caractérisant par leur capacité à photoréagir avec certaines biomolécules. Ces complexes se caractérisent par l’utilisation de ligands fortement π-déficients, comme le 1,2,4,5,8-tétraazaphénanthrène (TAP). Nettement plus photooxydant que les complexes analogues au [Ru(bpy)3]2+, ces complexes photooxydants sont capables, sous irradiation, de donner lieu à un transfert d’électron depuis la base guanine de l’ADN vers le complexe excité. Les deux entités radicalaires ainsi formées peuvent ensuite réagir entre elles pour former un photoadduit au sein duquel un lien covalent lie irréversiblement un ligand TAP du complexe à la guanine.Les travaux réalisés dans le cadre de cette thèse de doctorat s’inscrivent dans la poursuite de la recherche effectuée au sein du laboratoire autour de cette photoréaction. Deux axes majeurs ont été développés. Un premier axe de recherche a été dédié à l’étude fondamentale des propriétés photophysiques et photochimiques du photoadduit obtenu suite à la photoréaction du [Ru(TAP)3]2+ avec une base guanine. Cette étude photophysique fondamentale de l’adduit [Ru(TAP)2(TAP-GMP)] (présentée dans le deuxième chapitre) vise à caractériser sa photophysique afin de comprendre comment, sous irradiation, des biadduits entre un complexe de ruthénium et deux guanines sont observés, alors que les premières études réalisées sur les photoadduits indiquent que ceux-ci ne sont pas luminescents. Le second axe de recherche consiste en la mise au point de systèmes élaborés à base des complexes de ruthénium visant à contrôler leur photoréactivité dans un milieu biologique. Pour ce faire, les complexes de ruthénium photoréactifs ont été ancrés sur des molécules biologiques. D’une part, les complexes ont été conjugués sur des OAS, oligonucléotides anti-sens, afin de conférer aux conjugués résultants la possibilité de cibler une partie précise de l’ADN ou d’ARN, et mener, in fine, au blocage de l’expression d’un gène particulier. Ces conjugués ont déjà été étudiés par le passé dans notre laboratoire. Les résultats présentés ici (chapitre 3) permettent à la fois de mieux comprendre la photochimie des Ru-OAS en présence de leur cible spécifique, ainsi que de démontrer in vivo la validité de la stratégie de gene silencing envisagée depuis quelques années. D’autre part, des complexes de ruthénium ont été conjugués à des peptides ou plateformes en vue de leur permettre de pénétrer à l’intérieur des cellules (chapitre 4). Les complexes ne pouvant normalement pas traverser les membranes cytoplasmiques, nous avons démontré que l’ancrage de ceux-ci au peptide transvecteur TAT permet de les vectoriser dans le cytoplasme. Cette incorporation se fait vraisemblablement par endocytose. Lors de ces études, l’importance de la localisation finale du complexe au sein de la cellule a été mise en évidence. Afin de conférer une sélectivité de vectorisation dans des cellules données (pénétration active et selon la présence de récepteurs spécifiques à la surface membranaire), les complexes ont été ancrés sur une plateforme RAFT(RGD)4. Dans ce cas, nous avons démontré qu’une internalisation spécifique dans des cellules sur-exprimant l’intégrine αvβ3 est possible pour les conjugués Ru-RAFT(RGD)4. Finalement, des études ont été réalisées sur les complexes ancrés sur plateforme calixarènique. Les résultats présentés permettent de caractériser ces conjugués Ru-Calix afin d’orienter leur développement avant les études de vectorisation cellulaire. Grâce aux résultats obtenus, un design permettant aux complexes de conserver leur photoréactivité a pu être établi et servira pour les développements futurs. En sus de ces deux axes de recherche principaux, le premier chapitre de résultats et discussions porte quant à lui sur l’étude fondamentale des complexes [Ru(TAP)3]2+ et [Ru(TAP)2(phen)]2+ ;plus précisément, une étude complète du complexe [Ru(TAP)2(phen)]2+ dans l’acétonitrile et le butyronitrile en présence d’un composé calixarènique (développé dans l’équipe du Pr. Ivan Jabin) est présentée. Il appert que l’utilisation du calixarène permet de mettre en évidence des processus photophysiques et photochimiques complexes, qui n’avaient pas été détectés auparavant.Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Chronic neutrophilic leukaemia with enlarged lymph nodes and lysozyme deficiency

    No full text
    A further case of chronic neutrophilic leukaemia is reported and compared to fourteen previously reported cases. The presence of enlarged lymph nodes as the first clinical sign and the existence of a relative lysozyme deficiency of the granulocytes were striking features.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    EPIDEMIE INTRAHOSPITALIERE A STAPHYLOCOQUE DORE RESISTANT A L'OXACILLINE ET AUX AMINOGLYCOSIDES

    No full text
    SCOPUS: NotDefined.jinfo:eu-repo/semantics/publishe

    Ru-TAP complexes and DNA. From photo-induced electron transfer to gene photo-silencing in living cells.

    No full text
    In this review, examples of applications of the photo-induced electron transfer (PET) process between photo-oxidizing Ru–TAP (TAP = 1,4,5,8-tetraazaphenanthrene) complexes and DNA or oligodeoxynucleotides (ODNs) are discussed. Applications using a free Ru–TAP complex (not chemically anchored to an ODN) are first considered. In this case, the PET gives rise to the production of an irreversible adduct of the Ru complex on a guanine (G) base, with formation of a covalent bond. After absorption of a second photon, this adduct can generate a bi-adduct, whereby the same complex binds to a second G moiety. These bi-adduct formations are responsible for photo-cross-linking between two strands of a duplex, each containing a G base, or between two G moieties of a single strand such as a telomeric sequence, as demonstrated by polyacrylamide gel electrophoresis analyses or mass spectrometry. Scanning force microscopy also allows the detection of such photobridgings with plasmid DNA. Other applications, for example with Ru–ODN, i.e. ODN with chemically anchored Ru–TAP complexes, are also discussed. It is shown that such Ru–ODN probes containing a G base in their own sequences are capable of photo-cross-linking selectively with their targeted complementary sequences, and, in the absence of such targets, they self-photo-inhibit. Such processes are applied successfully in gene photo-silencing of human papillomavirus cancer cells.SCOPUS: re.jSCOPUS: re.jinfo:eu-repo/semantics/publishe

    [Ru(Me4phen)2dppz](2+), a Light Switch for DNA Mismatches.

    No full text
    [Ru(Me4phen)2dppz](2+) serves as a luminescent "light switch" for single base mismatches in DNA. The preferential luminescence enhancement observed with mismatches results from two factors: (i) the complex possesses a 26-fold higher binding affinity toward the mismatch compared to well-matched base pairs, and (ii) the excited state emission lifetime of the ruthenium bound to the DNA mismatch is 160 ns versus 35 ns when bound to a matched site. Results indicate that the complex binds to the mismatch through a metalloinsertion binding mode. Cu(phen)2(2+) quenching experiments show that the complex binds to the mismatch from the minor groove, characteristic of metalloinsertion. Additionally, the luminescence intensity of the complex with DNA containing single base mismatches correlates with the thermodynamic destabilization of the mismatch, also consistent with binding through metalloinsertion. This complex represents a potentially new early cancer diagnostic for detecting deficiencies in mismatch repair.info:eu-repo/semantics/publishe

    Probing DNA using metal complexes

    No full text
    This chapter explains why and how some metal complexes are capable of probing DNA-not only its overall structure or topology but also its local properties and characteristics. It strictly focuses on the Ru(II) complexes because for years now they have continued to be studied as DNA photoprobes. The chapter attempts to explain with specific examples why some complexes in particular have been more successful for probing DNA, not only DNA in a test-tube, but also in vivo for cellular biology applications. The chapter begins with a general discussion on the photophysics of Ru(II) complexes. It rationalizes the interactive behaviour of such complexes with different DNA types, from local DNA characteristics to large DNA global structures found in living cells. Specific examples of Ru(II) complexes used for photoprobing special DNA properties will then be discussed.SCOPUS: ch.binfo:eu-repo/semantics/publishe

    BRUCELLA MELITENSIS: PERSON-TO-PERSON TRANSMISSION?

    No full text
    SCOPUS: le.jinfo:eu-repo/semantics/publishe
    corecore