16 research outputs found

    Immunology and virology of HIV-1 infection in Cameroon

    Get PDF
    Includes bibliographical references.This study confirms the widespread existence of highly divergent HIV lineages in Cameroon. While the genetic complexity of the Cameroonian HIV-1 epidemic has potentially serious implications for the design of biomedical interventions, detailed analyses of divergent Cameroonian HIV-1 group M lineages could be crucial for dissecting the earliest evolutionary steps in the emergence of HIV-1 group M. In addition, the central nature of HIV-1 consensus M sequences resulted in their broad recognition, but failed to identify highly immunodominant peptides between homogeneous and diverse HIV epidemics. Further refinement of these immunogens may contribute to the development of a globally relevant vaccine. Finally, the use of PTE peptides did not increase the breadth of T cell recognition in Abstract Page xvi this divergent population when compared to consensus M peptides. This underlies the need to include more mosaic peptides representing the variety of viruses that circulate in the region

    Elucidation of Early Evolution of HIV-1 Group M in the Congo Basin Using Computational Methods

    Get PDF
    The Congo Basin region is believed to be the site of the cross-species transmission event that yielded HIV-1 group M (HIV-1M). It is thus likely that the virus has been present and evolving in the region since that cross-species transmission. As HIV-1M was only discovered in the early 1980s, our directly observed record of the epidemic is largely limited to the past four decades. Nevertheless, by exploiting the genetic relatedness of contemporary HIV-1M sequences, phylogenetic methods provide a powerful framework for investigating simultaneously the evolutionary and epidemiologic history of the virus. Such an approach has been taken to find that the currently classified HIV-1 M subtypes and Circulating Recombinant Forms (CRFs) do not give a complete view of HIV-1 diversity. In addition, the currently identified major HIV-1M subtypes were likely genetically predisposed to becoming a major component of the present epidemic, even before the events that resulted in the global epidemic. Further efforts have identified statistically significant hot- and cold-spots of HIV-1M subtypes sequence inheritance in genomic regions of recombinant forms. In this review we provide ours and others recent findings on the emergence and spread of HIV-1M variants in the region, which have provided insights into the early evolution of this virus

    Characterization of HIV-1 gag and nef in Cameroon: further evidence of extreme diversity at the origin of the HIV-1 group M epidemic

    Get PDF
    BACKGROUND: Cameroon, in west central Africa, has an extraordinary degree of HIV diversity, presenting a major challenge for the development of an effective HIV vaccine. Given the continuing need to closely monitor the emergence of new HIV variants in the country, we analyzed HIV-1 genetic diversity in 59 plasma samples from HIV-infected Cameroonian blood donors. Full length HIV gag and nef sequences were generated and phylogenetic analyses were performed. FINDINGS: All gag and nef sequences clustered within HIV-1M. Circulating recombinant form CRF02_AG predominated, accounting for 50% of the studied infections, followed by clade G (11%), clade D and CRF37_cpx (4% each), and clades A, F, CRF01_AE and CRF36_cpx (2% each). In addition, 22% of the studied viruses apparently had nef and gag genes from viruses belonging to different clades, with the majority (8/10) having either a nef or gag gene derived from CRF02_AG. Interestingly, five gag sequences (10%) and three (5%) nef sequences were neither obviously recombinant nor easily classifiable into any of the known HIV-1M clades. CONCLUSION: This suggests the widespread existence of highly divergent HIV lineages in Cameroon. While the genetic complexity of the Cameroonian HIV-1 epidemic has potentially serious implications for the design of biomedical interventions, detailed analyses of divergent Cameroonian HIV-1M lineages could be crucial for dissecting the earliest evolutionary steps in the emergence of HIV-1M

    An epidemiological synthesis of emerging and re-emerging zoonotic disease threats in Cameroon, 2000-2022: a systematic review

    Get PDF
    Population factors such as urbanization, socio-economic, and environmental factors are driving forces for emerging/re-emerging zoonotic diseases in Cameroon. To inform preparedness and prioritization efforts, this study mapped out epidemiological data (including prevalence) of zoonotic diseases occurring in Cameroon between 2000 and 2022 by demographic factors. Following the PRISMA guidelines, a protocol was registered in the PROSPERO database (CRD42022333059). Independent reviewers searched the PubMed, Embase, CINAHL, Cochrane, and Scopus databases on May 30, 2022 for relevant articles; duplicates were removed, and the titles, abstracts, and full texts were screened to identify eligible articles. Out of 4142 articles identified, 64 eligible articles were retrieved in the database search and an additional 12 from the cited literature (  = 76). Thirty-five unique zoonoses (viral, bacterial, and parasitic) were indexed, including Cameroon priority zoonoses: anthrax, bovine tuberculosis, Ebola and Marburg virus disease, highly pathogenic avian influenza, and rabies. The number of studies varied by region, ranging from 12 in the Far North to 32 in the Centre Region. The most reported were as follows: brucellosis (random-effects pooled estimate proportion (effect size), ES 0.05%, 95% confidence interval (CI) 0.03-0.07;  = 6), dengue (ES 0.13%, 95% CI 0.06-0.22;  = 12), avian and swine influenza virus (ES 0.10%, 95% CI 0.04-0.20;  = 8), and toxoplasmosis (ES 0.49%, 95% CI 0.35-0.63;  = 11), although values were greater than 75%, thus there was high inter-study heterogeneity ( < 0.01). This understanding of the distribution of emerging and re-emerging zoonotic threats in Cameroon is vital to effective preventive and resource prioritization measures

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Challenges in the Design of a T Cell Vaccine in the Context of HIV-1 Diversity

    No full text
    The extraordinary variability of HIV-1 poses a major obstacle to vaccine development. The effectiveness of a vaccine is likely to vary dramatically in different populations infected with different HIV-1 subtypes, unless innovative vaccine immunogens are developed to protect against the range of HIV-1 diversity. Immunogen design for stimulating neutralizing antibody responses focuses on “breadth” – the targeting of a handful of highly conserved neutralizing determinants on the HIV-1 Envelope protein that can recognize the majority of viruses across all HIV-1 subtypes. An effective vaccine will likely require the generation of both broadly cross-neutralizing antibodies and non-neutralizing antibodies, as well as broadly cross-reactive T cells. Several approaches have been taken to design such broadly-reactive and cross-protective T cell immunogens. Artificial sequences have been designed that reduce the genetic distance between a vaccine strain and contemporary circulating viruses; “mosaic” immunogens extend this concept to contain multiple potential T cell epitope (PTE) variants; and further efforts attempt to focus T cell immunity on highly conserved regions of the HIV-1 genome. Thus far, a number of pre-clinical and early clinical studies have been performed assessing these new immunogens. In this review, the potential use of these new immunogens is explored

    High Degree of HIV-1 group M Genetic Diversity within Circulating Recombinant Forms: Insight into the Early Events of HIV-1M Evolution

    No full text
    The existence of various highly divergent HIV-1 lineages and of recombination-derived sequence tracts of indeterminate origin within established circulating recombinant forms (CRFs) strongly suggests that HIV-1 group M (HIV-1M) diversity is not fully represented under the current classification system. Here we used a fully exploratory screen for recombination on a set of 480 near-full-length genomes representing the full known diversity of HIV-1M. We decomposed recombinant sequences into their constituent parts and then used maximum-likelihood phylogenetic analyses of this mostly recombination-free data set to identify rare divergent sequence lineages that fall outside the major named HIV-1M taxonomic groupings. We found that many of the sequence fragments occurring within CRFs (including CRF04_cpx, CRF06_cpx, CRF11_cpx, CRF18_cpx, CRF25_cpx, CRF27_cpx, and CRF49_cpx) are in fact likely derived from divergent unclassified parental lineages that may predate the current subtypes, even though they are presently identified as derived from currently defined HIV-1M subtypes. Our evidence suggests that some of these CRFs are descended predominantly from what were or are major previously unidentified HIV-1M lineages that were likely epidemiologically relevant during the early stages of the HIV-1M epidemic. The restriction of these divergent lineages to the Congo basin suggests that they were less infectious and/or simply not present at the time and place of the initial migratory wave that triggered the global epidemic. IMPORTANCE HIV-1 group M (HIV-1M) likely spread to the rest of the world from the Congo basin in the mid-1900s (N. R. Faria et al., Science 346:56-61, 2014, http://dx.doi.org/10.1126/science.1256739) and is today the principal cause of the AIDS pandemic. Here, we show that large sequence fragments from several HIV-1M circulating recombinant forms (CRFs) are derived from divergent parental lineages that cannot reasonably be classified within the nine established HIV-1M subtypes. These lineages are likely to have been epidemiologically relevant in the Congo basin at the onset of the epidemic. Nonetheless, they appear not to have undergone the same explosive global spread as other HIV-1M subtypes, perhaps because they were less transmissible. Concerted efforts to characterize more of these divergent lineages could allow the accurate inference and chemical synthesis of epidemiologically key ancestral HIV-1M variants so as to directly test competing hypotheses relating to the viral genetic factors that enabled the present pandemic

    Characterization of HIV-1 <it>gag</it> and <it>nef</it> in Cameroon: further evidence of extreme diversity at the origin of the HIV-1 group M epidemic

    No full text
    Abstract Background Cameroon, in west central Africa, has an extraordinary degree of HIV diversity, presenting a major challenge for the development of an effective HIV vaccine. Given the continuing need to closely monitor the emergence of new HIV variants in the country, we analyzed HIV-1 genetic diversity in 59 plasma samples from HIV-infected Cameroonian blood donors. Full length HIV gag and nef sequences were generated and phylogenetic analyses were performed. Findings All gag and nef sequences clustered within HIV-1M. Circulating recombinant form CRF02_AG predominated, accounting for 50% of the studied infections, followed by clade G (11%), clade D and CRF37_cpx (4% each), and clades A, F, CRF01_AE and CRF36_cpx (2% each). In addition, 22% of the studied viruses apparently had nef and gag genes from viruses belonging to different clades, with the majority (8/10) having either a nef or gag gene derived from CRF02_AG. Interestingly, five gag sequences (10%) and three (5%) nef sequences were neither obviously recombinant nor easily classifiable into any of the known HIV-1M clades. Conclusion This suggests the widespread existence of highly divergent HIV lineages in Cameroon. While the genetic complexity of the Cameroonian HIV-1 epidemic has potentially serious implications for the design of biomedical interventions, detailed analyses of divergent Cameroonian HIV-1M lineages could be crucial for dissecting the earliest evolutionary steps in the emergence of HIV-1M.</p

    Occurrence and Distribution of Banana bunchy top virus Related Agro-Ecosystem in South Western, Democratic Republic of Congo

    No full text
    Banana bunchy top virus (BBTV) is one of the most severe and widespread virus limiting produc- tion and distribution of planting material of banana (Musa spp.) crops in the world. In Democratic Republic of Congo (DRC), these crops play a major role in daily life of almost 70% of citizen. Many factors influence banana production negatively such as Banana bunchy top disease. Epidemiol- ogical survey was conducted in experimental stations and farmers’ fields for two consecutive sea- sons covering 72 sites in five provinces of south western of RDC. The objective of this study was to evaluate the presence and distribution of the Banana bunchy top virus in five provinces of South Western of DRC, with emphasis on the agro-ecological factors. A total of 174 Musa spp. leaves samples were collected and analyzed by PCR. The results revealed the presence of BBTV in all provinces investigated. The frequency of BBTV was 6.3% in Bandundu, 12.1% in Kasaï Oriental, 17.8% Bas Congo, 1.1% in Katanga and 7.5% Kinshasa Urban and Peri-urban. Results also re- vealed that BBTV occurred in experimental station and farmers’ fields, both having all cooking and dessert bananas. The high prevalence of BBTV seemed to be linked to multiple introductions of planting materials in the Bas Congo province during 1990 and 2002. However, the province of Katanga had not experienced the introduction of planting material. This factor would explain the lowest prevalence of Banana bunchy top virus in this province. The results indicated that there was a real need to facilitate access to genetically improved and healthy certified planting material in these provinces
    corecore