4 research outputs found

    Tuning Cross-Link Density in a Physical Hydrogel by Supramolecular Self-Sorting

    No full text
    Cross-link density is an important parameter for the macroscopic mechanical properties of hydrogels. Increasing network density leads to an increase in the storage and loss moduli of the gel and can be accomplished by either increasing the concentration of cross-linkers, or by reducing the fraction of mechanically inactive cross-links. Mechanically inactive cross-links consist of loops in the network, which do not contribute to the mechanical properties. Suppression of loop formation is demonstrated in a system of semiflexible supramolecular rods of poly­(ethylene glycol)–bis­(urea) bolaamphiphiles. Use of a cross-linker which, due to self-sorting of its hydrophobic segments, preferentially connects different rods, increases the modulus of a hydrogel by a factor of 15 compared to a system without self-sorting. By using statistical-mechanical calculations, it is shown that this increase can be explained by the increased tendency of the cross-linkers to form bridges between the semiflexible rods and thus increasing the cross-link density in the supramolecular hydrogel

    Network Formation in an Orthogonally Self-Assembling System

    No full text
    Many supramolecular motifs self-assemble into nanorods, forming the basis of the mechanical properties of supramolecular polymers. When integrated as end-caps in a bifunctional telechelic polymer, the motifs can phase segregate into the same or into another nanorod. In the latter case, a functional cross-link is formed by the bridging chain that strengthens the polymer network. This study introduces a supramolecular polymeric system that consists of two different nanorod forming supramolecular motifs. When end-capped to monofunctional polymers, these supramolecular motifs self-assemble in an orthogonal fashion in two separate types of noncross-linked nanorods, resulting in a viscous liquid lacking macroscopic properties. The addition of 15 mol % of an α,ω-telechelic polymer containing both supramolecular motifs, each on one end, transforms this viscous sticky liquid to a solid material with elastomeric properties due to network formation between the two types of nanorods
    corecore