21 research outputs found

    Rheology of the wet surfactant foams and biofoams - a review

    Get PDF
    The rheology of foams is a difficult subject due to the complexity of their structure and the nature of their components. It’s influenced by multiple factors including: liquid bulk properties, gas properties, air phase volume, liquid volume fraction, solution viscosity, interfacial thin film visco-elasticity, bubble size distribution, and bubble shape. A nature of the adsorbed surfactants or biosurfactants and state of adsorption layer also modified the properties of the thin liquid film. The physical measurements of foam rheological properties are also complicated by its inherently unstable nature. Therefore, this review is focused on rheological studies and comparisons between various surfactant based foams and biofoams having wellcharacterized and different properties

    The Effect of Electrolytes and Urea on the Ethyl Lauroyl Arginate and Cellulose Nanocrystals Foam Stability

    No full text
    Carboxylated cellulose nanocrystals (cCNC) are highly dispersible particles useful in many industries. In particular, they can be applied to form Pickering emulsions and foams for “green” applications in the cosmetics, pharmaceutical industry or food processing. We demonstrated that carboxylated cellulose nanocrystals enhance foamability and foam stability when mixed with cationic surfactant ethyl lauroyl arginate (LAE), having superior properties over sulfated cellulose nanocrystals (sCNC) concerning surfactant concentration range and foam volume. Mixtures of LAE and cCNC were characterized for their hydrodynamic diameter, zeta potential, surface tension and surface rheological properties. The influence of electrolytes, namely, sodium chloride, guanidine hydrochloride and sodium salicylate, and the addition of concentrated urea to LAE-cCNC mixtures on foamability and foam stability were investigated. Electrolytes in the concentration of 5 mM showed a moderate effect on foam stability. In contrast, spectacular foam collapse was detected after adding concentrated urea. The preliminary rheological data from the pendant drop oscillations revealed low elastic modulus upon urea addition and the loss modulus that increased with the frequency, which suggested a viscous interfacial layer

    The Effect of Electrolytes and Urea on the Ethyl Lauroyl Arginate and Cellulose Nanocrystals Foam Stability

    No full text
    Carboxylated cellulose nanocrystals (cCNC) are highly dispersible particles useful in many industries. In particular, they can be applied to form Pickering emulsions and foams for “green” applications in the cosmetics, pharmaceutical industry or food processing. We demonstrated that carboxylated cellulose nanocrystals enhance foamability and foam stability when mixed with cationic surfactant ethyl lauroyl arginate (LAE), having superior properties over sulfated cellulose nanocrystals (sCNC) concerning surfactant concentration range and foam volume. Mixtures of LAE and cCNC were characterized for their hydrodynamic diameter, zeta potential, surface tension and surface rheological properties. The influence of electrolytes, namely, sodium chloride, guanidine hydrochloride and sodium salicylate, and the addition of concentrated urea to LAE-cCNC mixtures on foamability and foam stability were investigated. Electrolytes in the concentration of 5 mM showed a moderate effect on foam stability. In contrast, spectacular foam collapse was detected after adding concentrated urea. The preliminary rheological data from the pendant drop oscillations revealed low elastic modulus upon urea addition and the loss modulus that increased with the frequency, which suggested a viscous interfacial layer

    Effect of products of PLA2 catalyzed hydrolysis of DLPC on motion of rising bubbles

    No full text
    International audienceLocal velocities of rising bubbles decrease with the increasing concentration in solution of surface-active, water-soluble species. Therefore, it is possible to use this phenomenon to monitor products of enzymatic reactions, which meet such criteria. In this study, hydrolysis of 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine (DLPC) catalyzed by calcium-dependent phospholipase A2 (PLA2) (EC3.1.1.4) from porcine pancreas was used as model reaction. The products of this reaction are lauric acid (LA) and 1-lauroy1-2-hydroxy-sn-glycero-3-phosphatidylcholine (Lyso-PC). DLPC was dispersed in a chloroform/methanol mixture that was spread on a free PLA2 solution surface. Air bubbles were then formed at a capillary orifice and the local velocity of rising bubbles as a function of the distance from the capillary tip was monitored. Local velocity profiles were compared with profiles recorded for solutions of pure enzymatic reaction products and their mixtures. Our experiments showed that the product, which had a dominating effect on bubble motion retardation, was lyso-phosphatidylcholine. This can be explained by differences in the kinetics of lauric acid and lyso-phosphatidylcholine transfer from the spread layer to the solution

    Rigidity Percolation in Particle-Laden Foams

    No full text
    International audienceWe study the viscoelastic behavior of aqueous foam mixed with solid noncolloidal particles. We show that adding a tiny amount of grains can enhance the elastic and loss shear moduli by more than 1 order of magnitude. The scaling of these moduli with solid volume fraction is in qualitative agreement with that predicted by an effective-medium rigidity percolation model. We present a simple model, based on capillary attraction, to explain the particle-size dependence of the threshold

    Design of Carbon Nanocomposites Based on Sodium Alginate/Chitosan Reinforced with Graphene Oxide and Carbon Nanotubes

    No full text
    The aim of this study was to use a simple, low-cost and environmentally friendly synthesis method to design nanocomposites. For this purpose, carbon nanostructures were used to reinforce the chitosan/alginate bond in order to improve the mechanical, solubility, water absorption and barrier (protection against UV radiation) properties of the chitosan/alginate structure. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), ultraviolet and visible light absorption spectroscopy (UV-VIS) and color analysis were utilized, and the thickness and mechanical properties of the obtained films were determined. The tests that were carried out showed an equal distribution of nanostructures in the composite material and the absence of chemical interactions between nanoparticles and polymers. It was also proven that the enrichment of the polysaccharide composite with graphene oxide and carbon nanotubes positively affected its absorption, mechanical capabilities and color

    The Influence of the Surface Chemistry of Cellulose Nanocrystals on Ethyl Lauroyl Arginate Foam Stability

    Get PDF
    Guanidine-based surfactant ethyl lauroyl arginate (LAE) and cellulose nanocrystals (CNCs) form complexes of enhanced surface activity when compared to pure surfactants. The LAE-CNC mixtures show enhanced foaming properties. The dynamic thin-film balance technique (DTFB) was used to study the morphology, drainage and rupture of LAE-CNC thin liquid films under constant driving pressure. A total of three concentrations of surfactant and the corresponding mixtures of LAE with sulfated (sCNC) and carboxylated (cCNC) cellulose nanocrystals were studied. The sCNC and cCNC suspension with LAE formed thin films, with stability increasing with surfactant concentration and with complex rheological properties. In the presence of LAE, the aggregation of CNC was observed. While the sCNC aggregates were preferentially present in the film volume with a small fraction at the surface, the cCNC aggregates, due to their higher hydrophobicity, were preferentially located at film interfaces, forming compact layers. The presence of both types of aggregates decreased the stability of the thin liquid film compared to the one for the LAE solution with the same concentration. The addition of CNC to LAE was critical for foam formation, and foam stability was in qualitative agreement with the thin films’ lifetimes. The foam volume increased with the LAE concentration. However, there was an optimum surfactant concentration to achieve stable foam. In particular, the very resistant foam was obtained with cCNC suspensions that formed the interfaces with a complex structure and rheology. On the other hand, at high LAE concentrations, the aggregates of CNC may exhibit antifoaming propertie

    The Influence of the Surface Chemistry of Cellulose Nanocrystals on Ethyl Lauroyl Arginate Foam Stability

    No full text
    Guanidine-based surfactant ethyl lauroyl arginate (LAE) and cellulose nanocrystals (CNCs) form complexes of enhanced surface activity when compared to pure surfactants. The LAE-CNC mixtures show enhanced foaming properties. The dynamic thin-film balance technique (DTFB) was used to study the morphology, drainage and rupture of LAE-CNC thin liquid films under constant driving pressure. A total of three concentrations of surfactant and the corresponding mixtures of LAE with sulfated (sCNC) and carboxylated (cCNC) cellulose nanocrystals were studied. The sCNC and cCNC suspension with LAE formed thin films, with stability increasing with surfactant concentration and with complex rheological properties. In the presence of LAE, the aggregation of CNC was observed. While the sCNC aggregates were preferentially present in the film volume with a small fraction at the surface, the cCNC aggregates, due to their higher hydrophobicity, were preferentially located at film interfaces, forming compact layers. The presence of both types of aggregates decreased the stability of the thin liquid film compared to the one for the LAE solution with the same concentration. The addition of CNC to LAE was critical for foam formation, and foam stability was in qualitative agreement with the thin films’ lifetimes. The foam volume increased with the LAE concentration. However, there was an optimum surfactant concentration to achieve stable foam. In particular, the very resistant foam was obtained with cCNC suspensions that formed the interfaces with a complex structure and rheology. On the other hand, at high LAE concentrations, the aggregates of CNC may exhibit antifoaming properties
    corecore