11 research outputs found
On the Minimum/Stopping Distance of Array Low-Density Parity-Check Codes
In this work, we study the minimum/stopping distance of array low-density
parity-check (LDPC) codes. An array LDPC code is a quasi-cyclic LDPC code
specified by two integers q and m, where q is an odd prime and m <= q. In the
literature, the minimum/stopping distance of these codes (denoted by d(q,m) and
h(q,m), respectively) has been thoroughly studied for m <= 5. Both exact
results, for small values of q and m, and general (i.e., independent of q)
bounds have been established. For m=6, the best known minimum distance upper
bound, derived by Mittelholzer (IEEE Int. Symp. Inf. Theory, Jun./Jul. 2002),
is d(q,6) <= 32. In this work, we derive an improved upper bound of d(q,6) <=
20 and a new upper bound d(q,7) <= 24 by using the concept of a template
support matrix of a codeword/stopping set. The bounds are tight with high
probability in the sense that we have not been able to find codewords of
strictly lower weight for several values of q using a minimum distance
probabilistic algorithm. Finally, we provide new specific minimum/stopping
distance results for m <= 7 and low-to-moderate values of q <= 79.Comment: To appear in IEEE Trans. Inf. Theory. The material in this paper was
presented in part at the 2014 IEEE International Symposium on Information
Theory, Honolulu, HI, June/July 201
Error-Correction Coding and Decoding: Bounds, Codes, Decoders, Analysis and Applications
Coding; Communications; Engineering; Networks; Information Theory; Algorithm
Error-correction coding and decoding: bounds, codes, decoders, analysis and applications
This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of these codes. Part IV deals with decoders designed to realize optimum performance. Part V describes applications which include combined error correction and detection, public key cryptography using Goppa codes, correcting errors in passwords and watermarking. This book is a valuable resource for anyone interested in error-correcting codes and their applications, ranging from non-experts to professionals at the forefront of research in their field This book is open access under a CC BY 4.0 license
Error-Correction Coding and Decoding: Bounds, Codes, Decoders, Analysis and Applications
Coding; Communications; Engineering; Networks; Information Theory; Algorithm