77 research outputs found
Processivity of translation in the eukaryote cell: Role of aminoacyl-tRNA synthetases
AbstractSeveral lines of evidence led to the conclusion that mammalian ribosomal protein synthesis is a highly organized biological process in vivo. A wealth of data support the concept according to which tRNA aminoacylation, formation of the ternary complex on EF1A and delivery of aminoacyl-tRNA to the ribosome is a processive mechanism where tRNA is vectorially transferred from one component to another. Polypeptide extensions, referred to as tRBDs (tRNA binding domains), are appended to mammalian and yeast aminoacyl-tRNA synthetases. The involvement of these domains in the capture of deacylated tRNA and in the sequestration of aminoacylated tRNA, suggests that cycling of tRNA in translation is mediated by the processivity of the consecutive steps. The possible origin of the tRBDs is discussed
Aminoacyl-tRNA synthetases and DNA replication Molecular mimicry between RNAII and tRNALys
AbstractRecent data pertaining to different research areas, aminoacyl-tRNA synthetases and replication of ColE1 plasmids, have provided mutually attractive prospects. The gene encoding Escherichia coli lysyl-tRNA synthetase was first isolated as a host suppressor mutation that restores replication of a mutant ColE1 replicon. Comparison of RNAII and tRNALys suggests that lysyl-tRNA synthetase is involved in the formation of the displacement loop required for ColE1 plasmids replication and provides major identity elements of tRNALys
The Aminoacyl-tRNA Synthetase Complex
Aminoacyl-tRNA synthetases (AARSs) are essential enzymes that specifically aminoacylate one tRNA molecule by the cognate amino acid. They are a family of twenty enzymes, one for each amino acid. By coupling an amino acid to a specific RNA triplet, the anticodon, they are responsible for interpretation of the genetic code. In addition to this translational, canonical role, several aminoacyl-tRNA synthetases also fulfill nontranslational, moonlighting functions. In mammals, nine synthetases, those specific for amino acids Arg, Asp, Gln, Glu, Ile, Leu, Lys, Met and Pro, associate into a multi-aminoacyl-tRNA synthetase complex, an association which is believed to play a key role in the cellular organization of translation, but also in the regulation of the translational and nontranslational functions of these enzymes. Because the balance between their alternative functions rests on the assembly and disassembly of this supramolecular entity, it is essential to get precise insight into the structural organization of this complex. The high-resolution 3D-structure of the native particle, with a molecular weight of about 1.5 MDa, is not yet known. Low-resolution structures of the multi-aminoacyl-tRNA synthetase complex, as determined by cryo-EM or SAXS, have been reported. High-resolution data have been reported for individual enzymes of the complex, or for small subcomplexes. This review aims to present a critical view of our present knowledge of the aminoacyl-tRNA synthetase complex in 3D. These preliminary data shed some light on the mechanisms responsible for the balance between the translational and nontranslational functions of some of its components
Aminoacyl-tRNA Synthetase Family from Prokaryotes and Eukaryotes: Structural Domains and Their Implications
Functional Dissection of the Eukaryotic-specific tRNA-interacting Factor of Lysyl-tRNA Synthetase
International audienceIn the cytoplasm of higher eukaryotic cells, aminoacyl-tRNA synthetases (aaRSs) have polypeptide chain extensions appended to conventional prokaryotic-like synthetase domains. The supplementary domains, referred to as tRNA-interacting factors (tIFs), provide the core synthetases with potent tRNA-binding capacities, a functional requirement related to the low concentration of free tRNA prevailing in the cytoplasm of eukaryotic cells. Lysyl-tRNA synthetase is a component of the multi-tRNA synthetase complex. It exhibits a lysine-rich N-terminal polypeptide extension that increases its catalytic efficiency. The functional characterization of this new type of tRNA-interacting factor has been conducted. Here we describe the systematic substitution of the 13 lysine or arginine residues located within the general RNA-binding domain of hamster LysRS made of 70 residues. Our data show that three lysine and one arginine residues are major building blocks of the tRNA-binding site. Their mutation into alanine led to a reduced affinity for tRNA(3)(Lys) or minimalized tRNA mimicking the acceptor-TPsiC stem-loop of tRNA(3)(Lys) and a decrease in catalytic efficiency similar to that observed after a complete deletion of the N-terminal domain. Moreover, covalent continuity between the tRNA-binding and core domain is a prerequisite for providing LysRS with a tRNA binding capacity. Thus, our results suggest that the ability of LysRS to promote tRNA(Lys) networking during translation or to convey tRNA(3)(Lys) into the human immunodeficiency virus type 1 viral particles rests on the addition in evolution of this tRNA-interacting factor
The p18 component of the multisynthetase complex shares a protein motif with the β and γ subunits of eukaryotic elongation factor 1
AbstractIn higher eukaryotes, nine aminoacyl-tRNA synthetases form a multienzyme complex also comprising the three auxiliary proteins p18, p38 and p43, of apparent molecular masses of 18, 38 and 43 kDa. The function of these proteins, invariably found associated to the synthetase components of the complex, is unknown. In order to gain a more precise view of the structural and functional organization of this complex, we cloned the cDNA encoding the p18 component. The 174-amino-acid hamster protein displays sequence homology with the NH2-terminal moieties of the β and γ subunits of the elongation factor EF-1H, implicated in subunits interaction. The homologous polypeptide fragment of about 90 amino acids is also recovered in the NH2-terminal extension of human valyl-tRNA synthetase, involved in its assembly with EF-1H. These results suggest that p18 contributes a template for association of the multisynthetase complex with EF-1H
L'arginyl-ARNt synthétase de mammifère (rôle des interactions protéine-protéine et protéine-ARN sur son activité)
Les aminoacyl-ARNt synthétases (aaRSs) catalysent la liaison entre un ARNt et son acide aminé correspondant. Chez trois aaRSs, l'activation de l'acide aminé ne se produit qu'en présence de l'ARNt spécifique. L'étude de ce comportement chez l'ArgRS de hamster a montré que trois points de contact avec l'ARNt sont importants dans l'étape d'activation : les bases A76, C35 et A20. Ces trois bases doivent être portées par un ARNt possédant à la fois une certaine rigidité (forme en "L" intacte) et une certaine flexibilité (apportée ici par des paires G-U). Nous en concluons que le déclenchement de l'activation implique un ajustement induit réciproque entre l'ARNt et l'ArgRS.Les enzymes du complexe multi-aaRSs des eucaryotes supérieurs contiennent des domaines basiques additionnels dont certains interagissent avec les ARNts. Nous montrons que la présence de ces domaines permet d'augmenter l'affinité du complexe pour les ARNts spécifiques de ses neufs enzymes uniquement. Le corps catalytique des aaRSs du complexe impose donc sa spécificité aux domaines basiques, ces derniers augmentant l'affinité entre le corps catalytique et l'ARNt.La protéine p43, une protéine du complexe multi-aaRSs liant les ARNts et interagissant avec l'ArgRS, ne joue pas le rôle de cofacteur en trans de cette enzyme. Des cristaux d'un dérivé de la protéine p43 ont été obtenus et la structure résolue par remplacement moléculaire. Les résidus N-terminaux impliqués dans la fixation de l'ARNt sont invisibles dans la carte de densité électronique.Une mise au point des conditions de préparation du complexe multi-aaRS en vue d'une étude structurale par microscopie électronique et cristallographie a été réalisée.Each aminoacyl-tRNA synthetase catalyze the esterification of its cognate amino acid to the 3'-end of its cognate tRNA(s). Some aminoacyl-tRNA synthetases (aaRSs) catalyze the amino acid activation step only in the presence of a cognate tRNA. This behaviour has been studied in Arginyl-tRNA synthetase (ArgRS) from hamster. Our results show that three contact points with the tRNA molecule are important in the activation step : bases A76, A20 and C35. These three bases must be presented by a tRNA possessing both rigidity (intact " L " shape) and flexibility (provided by G-U base-pairs). We conclude that the triggering of the activation step in ArgRS implies an induced-fit mechanism.Enzymes from the multi-aaRSs complex found in higher eukaryotes display additional basic domains, some of them interacting with tRNAs. We show that these domains increase the affinity of the enzymes of the complex for their specific tRNAs only. Thus, the catalytic body of each enzyme determines its specificity, while the additionnal basic domains increase the affinity of the enzymes for their specific tRNA(s).The p43 protein, a component of the complex able to interact with tRNAs and ArgRS, does not affect the catalytic parameters of this enzyme. Crystals of a short form of the p43 protein have been obtained and the structure has been solved by molecular replacement, but the N-terminal residues, that are responsible for the interaction with tRNAs, are not visible. Conditions for the isolation of the multi-aaRSs complex have been refined in order to carry out a structural study using cryo-electron microscopy and crystallography.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF
Identity Elements for Specific Aminoacylation of a tRNA by Mammalian Lysyl-tRNA Synthetase Bearing a Nonspecific tRNA-Interacting Factor
International audienc
Rôle de la lysyl-ARNt synthétase mitochondriale humaine dans la réplication du VIH-1.
Le virus de l immunodéficience humaine de type 1 (VIH-1), est un rétrovirus dont le génome est composé de deux molécules d ARN simple brin. La transcriptase inverse codée par le VIH-1 utilise l ARNt3Lys de la cellule hôte pour amorcer la réplication de son génome ARN en ADN proviral. L ARNt3Lys est encapsidé dans les virions lors de l assemblage; la lysyl-ARNt synthétase (LysRS) cellulaire est impliquée dans ce mécanisme et sert de co-transporteur à l ARNt3Lys.Chez l homme, il existe deux formes de LysRS, une forme cytoplasmique (cLysRS) et une forme mitochondriale (pmLysRS) qui donnera la forme mature (mLysRS) après translocation dans la mitochondrie. Les deux LysRS sont issues d un même gène par épissage alternatif. Il a été démontré que seule la forme mitochondriale est présente dans les particules virales.Nous avons établi un modèle des interactions protéine-protéine impliquées dans la formation du complexe d encapsidation de l ARNt3Lys. En recherchant les interactions des précurseurs Gag et GagPol avec les LysRS et leurs domaines, nous avons démontré que seul le domaine Pol du précurseur GagPol a la capacité de s associer à la LysRS. Ce sont les sous-domaines transframe TF et intégrase IN du domaine Pol qui permettent l association entre LysRS et GagPol. Cette association se fait via le domaine catalytique de l enzyme. La sélectivité de l'encapsidation de la forme mitochondriale de LysRS aux dépens de sa forme cytoplasmique pourrait résider dans la stricte compartimentation cellulaire de ces deux formes enzymatiques. Nous avons voulu établir à quel stade l encapsidation de la LysRS mitochondriale a lieu, soit avant sa translocation mitochondriale sous forme de précurseur pmLysRS, soit après sous forme mLysRS maturée. Nous avons déterminé le site de maturation du précurseur pmLysRS puis caractérisé les deux formes mitochondriales de la LysRS, en déterminant leurs paramètres cinétiques et leur affinité pour l ARNt3Lys. Alors que la forme pmLysRS ne forme pas de complexe stable avec l ARNt, la forme maturée mLysRS est la plus apte à interagir avec l ARNt3Lys. Ce serait donc la mLysRS qui serait impliquée dans le transport de l ARNt3Lys dans les particules virales lors du bourgeonnement.Comme l'interaction GagPol:LysRS n'est pas spécifique in vitro de la forme mLysRS qui est la seule espèce de LysRS encapsidée, nous avons recherché si d autres protéines virales pouvaient intervenir dans la formation du complexe d encapsidation et conférer la spécificité pour la seule mLysRS. Nous avons montré que les protéines auxiliaires Rev et Vpr ont la capacité à s associer à la LysRS sans distinction d'origine, mais ne peuvent interagir dans le contexte du complexe d'encapsidation GagPol:mLysRS:ARNt3Lys. Les différentes formes de LysRS pourraient ainsi réguler l'activité de Vpr et Rev à d'autres étapes du cycle viral.The Human immunodeficiency virus type 1 (HIV-1) is a retrovirus with a genome composed of two molecules of single stranded RNA. The reverse transcriptase encoded by HIV-1 uses the cellular tRNA3Lys to prime the replication of its RNA genome into a proviral DNA. The tRNA3Lys is packaged into the viral particles during their assembly; the cellular lysyl-tRNA synthetase (LysRS) is involved in this mechanism as a co-carrier of tRNA3Lys.In human, there are two forms of LysRS, a cytoplasmic form (cLysRS) and a mitochondrial form (pmLysRS) that will be maturated into mLysRS after translocation into the mitochondrion. Both LysRS arise from the same gene by alternative splicing. It was demonstrated that only the mitochondrial species is present in the viral particles.We established a model of the protein-protein interactions which are implied in the formation of the packaging complex of tRNA3Lys. By searching for interactions of the viral precursors Gag and GagPol with the LysRS species and their domains, we demonstrated that only the Pol domain of the GagPol precursor has the capacity to interact with LysRS. The transframe (TF) and integrase (IN) domains of the Pol region of the polyprotein GagPol are required for association of LysRS with GagPol. This association is mediated by the catalytic domain of the enzyme. The selectivity of the packaging of the mitochondrial species of LysRS but not of its cytoplasmic species would rest on the cellular compartmentalization of these two enzyme forms. To establish at which step the mitochondrial LysRS is packaged, either as the pmLysRS precursor before its mitochondrial translocation, or after as the mature mLysRS, we determined the site of maturation of the pmLysRS precursor, then we characterized both mitochondrial forms of LysRS, by determining their kinetic parameters and their affinity for tRNA3Lys. Whereas the pmLysRS species did not form a stable complex with tRNA, the mature pmLysRS species did. Thus, mLysRS is the only LysRS species which could be implied in the transport of tRNA3Lys into the viral particles during the budding step. In vitro, the interaction GagPol:LysRS is not specific for the mLysRS species, but only the mitochondrial LysRS is packaged into the viral particles. We determined if another viral protein could impact the specificity of mLysRS packaging. We showed that the auxiliary proteins Rev and Vpr have the capacity to interact with LysRS but this intercation is not recovered in the context of the GagPol:mLysRS:tRNA3Lys packaging complex. These data suggest that the different forms of LysRS might regulate the activity of Vpr and Rev at other steps of the viral cycle.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF
Aminoacyl-tRNA synthetase complexes in evolution.
International audienceAminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecular assemblies is a key feature of organization of the translation apparatus in eukaryotes. It could be a means to control their oscillation between translational functions, when associated within a multi-aminoacyl-tRNA synthetase complex (MARS), and nontranslational functions, after dissociation from the MARS and association with other partners. In this review, we summarize the composition of the different MARS described from archaea to mammals, the mode of assembly of these complexes, and their roles in maintenance of cellular homeostasis
- …
