76 research outputs found

    A Chandra Grating Observation of the Dusty Wolf-Rayet Star WR48a

    Get PDF
    We present results of a Chandra High Energy Transmission Grating (HETG) observation of the carbon-rich Wolf-Rayet (WR) star WR48a. These are the first high-resolution spectra of this object in X-rays. Blue-shifted centroids of the spectral lines of about -360 km/s and line widths of 1000 - 1500 km/s (FWHM) were deduced from the analysis of the line profiles of strong emission lines. The forbidden line of Si XIII is strong and not suppressed, indicating that the rarefied 10-30 MK plasma forms far from strong sources of far-UV emission, most likely in a wind collision zone. Global spectral modeling showed that the X-ray spectrum of WR48a suffered higher absorption in the October 2012 Chandra observation compared to a previous January 2008 XMM-Newton observation. The emission measure of the hot plasma in WR48a decreased by a factor ~ 3 over the same period of time. The most likely physical picture that emerges from the analysis of the available X-ray data is that of colliding stellar winds in a wide binary system with an elliptical orbit. We propose that the unseen secondary star in the system is another WR star or perhaps a luminous blue variable.Comment: 13 pages, 5 figures, 2 tables; Accepted for publication in The Astrophysical Journa

    A multi-wavelength view on the dusty Wolf-Rayet star WR 48a

    Get PDF
    We present results from the first attempts to derive various physical characteristics of the dusty Wolf-Rayet star WR 48a based on a multi-wavelength view of its observational properties. This is done on the basis of new optical and near-infrared spectral observations and on data from various archives in the optical, radio and X-rays. The optical spectrum of WR 48a is acceptably well represented by a sum of two spectra: of a WR star of the WC8 type and of a WR star of the WN8h type. The strength of the interstellar absorption features in the optical spectra of WR 48a and the near-by stars D2-3 and D2-7 (both members of the open cluster Danks 2) indicates that WR 48a is located at a distance of ~4 kpc from us. WR 48a is very likely a thermal radio source and for such a case and smooth (no clumps) wind its radio emission suggests a relatively high mass-loss rate of this dusty WR star (dM/dt = a few x 10^(-4) solar masses per year). Long timescale (years) variability of WR 48a is established in the optical, radio and X-rays. Colliding stellar winds likely play a very important role in the physics of this object. However, some LBV-like (luminous blue variable) activity could not be excluded as well.Comment: Accepted for publication in MNRAS; 16 pages, 16 figures, 6 table

    Chandra HETGS Multi-Phase Spectroscopy of the Young Magnetic O Star theta^1 Orionis C

    Full text link
    We report on four Chandra grating observations of the oblique magnetic rotator theta^1 Ori C (O5.5 V) covering a wide range of viewing angles with respect to the star's 1060 G dipole magnetic field. We employ line-width and centroid analyses to study the dynamics of the X-ray emitting plasma in the circumstellar environment, as well as line-ratio diagnostics to constrain the spatial location, and global spectral modeling to constrain the temperature distribution and abundances of the very hot plasma. We investigate these diagnostics as a function of viewing angle and analyze them in conjunction with new MHD simulations of the magnetically channeled wind shock mechanism on theta^1 Ori C. This model fits all the data surprisingly well, predicting the temperature, luminosity, and occultation of the X-ray emitting plasma with rotation phase.Comment: 52 pages, 14 figures (1 color), 6 tables. To appear in the Astrophysical Journal, 1 August 2005, v628, issue 2. New version corrects e-mail address, figure and table formatting problem

    The Active Corona of HD 35850 (F8 V)

    Get PDF
    We present Extreme Ultraviolet Explorer spectroscopy and photometry of the nearby F8 V star HD 35850 (HR 1817). The EUVE spectra reveal 28 emission lines from Fe IX and Fe XV to Fe XXIV. The Fe XXI 102, 129 A ratio yields an upper limit for the coronal electron density, log n < 11.6 per cc. The EUVE SW spectrum shows a small but clearly detectable continuum. The line-to-continuum ratio indicates approximately solar Fe abundances, 0.8 < Z < 1.6. The resulting emission-measure distribution is characterized by two temperature components at log T of 6.8 and 7.4. The EUVE spectra have been compared with non-simultaneous ASCA SIS spectra of HD 35850. The SIS spectrum shows the same temperature distribution as the EUVE DEM analysis. However, the SIS spectral firs suggest sub-solar abundances, 0.34 < Z < 0.81. Although some of the discrepancy may be the result of incomplete X-ray line lists, we cannot explain the disagreement between the EUVE line-to-continuum ratio and the ASCA-derived Fe abundance. Given its youth (t ~ 100 Myr), its rapid rotation (v sin i ~ 50 km/s), and its high X-ray activity (Lx ~ 1.5E+30 ergs/s), HD 35850 may represent an activity extremum for single, main-sequence F-type stars. The variability and EM distribution can be reconstructed using the continuous flaring model of Guedel provided that the flare distribution has a power-law index of 1.8. Similar results obtained for other young solar analogs suggest that continuous flaring is a viable coronal heating mechanism on rapidly rotating, late-type, main-sequence stars.Comment: 32 pages incl. 14 figures and 3 tables. To appear in the 1999 April 10 issue of The Astrophysical Journa
    corecore