16 research outputs found

    Dry-transferred CVD graphene for inverted spin valve devices

    Full text link
    Integrating high-mobility graphene grown by chemical vapor deposition (CVD) into spin transport devices is one of the key tasks in graphene spintronics. We use a van der Waals pickup technique to transfer CVD graphene by hexagonal boron nitride (hBN) from the copper growth substrate onto predefined Co/MgO electrodes to build inverted spin valve devices. Two approaches are presented: (i) a process where the CVD-graphene/hBN stack is first patterned into a bar and then transferred by a second larger hBN crystal onto spin valve electrodes and (ii) a direct transfer of a CVD-graphene/hBN stack. We report record high spin lifetimes in CVD graphene of up to 1.75 ns at room temperature. Overall, the performances of our devices are comparable to devices fabricated from exfoliated graphene also revealing nanosecond spin lifetimes. We expect that our dry transfer methods pave the way towards more advanced device geometries not only for spintronic applications but also for CVD-graphene-based nanoelectronic devices in general where patterning of the CVD graphene is required prior to the assembly of final van der Waals heterostructures.Comment: 5 pages, 3 figure

    Nanosecond spin lifetimes in bottom-up fabricated bilayer graphene spin-valves with atomic layer deposited Al2_2O3_3 spin injection and detection barriers

    Full text link
    We present spin transport studies on bi- and trilayer graphene non-local spin-valves which have been fabricated by a bottom-up fabrication method. By this technique, spin injection electrodes are first deposited onto Si++^{++}/SiO2_2 substrates with subsequent mechanical transfer of a graphene/hBN heterostructure. We showed previously that this technique allows for nanosecond spin lifetimes at room temperature combined with carrier mobilities which exceed 20,000 cm2^2/(Vs). Despite strongly enhanced spin and charge transport properties, the MgO injection barriers in these devices exhibit conducting pinholes which still limit the measured spin lifetimes. We demonstrate that these pinholes can be partially diminished by an oxygen treatment of a trilayer graphene device which is seen by a strong increase of the contact resistance area products of the Co/MgO electrodes. At the same time, the spin lifetime increases from 1 ns to 2 ns. We believe that the pinholes partially result from the directional growth in molecular beam epitaxy. For a second set of devices, we therefore used atomic layer deposition of Al2_2O3_3 which offers the possibility to isotropically deposit more homogeneous barriers. While the contacts of the as-fabricated bilayer graphene devices are non-conductive, we can partially break the oxide barriers by voltage pulses. Thereafter, the devices also exhibit nanosecond spin lifetimes.Comment: 6 pages, 4 figure

    Low B Field Magneto-Phonon Resonances in Single-Layer and Bilayer Graphene

    Full text link
    Many-body effects resulting from strong electron-electron and electron-phonon interactions play a significant role in graphene physics. We report on their manifestation in low B field magneto-phonon resonances in high quality exfoliated single-layer and bilayer graphene encapsulated in hexagonal boron nitride. These resonances allow us to extract characteristic effective Fermi velocities, as high as 1.20×1061.20 \times 10^6 m/s, for the observed "dressed" Landau level transitions, as well as the broadening of the resonances, which increases with Landau level index

    Spin lifetimes exceeding 12 nanoseconds in graphene non-local spin valve devices

    Full text link
    We show spin lifetimes of 12.6 ns and spin diffusion lengths as long as 30.5 \mu m in single layer graphene non-local spin transport devices at room temperature. This is accomplished by the fabrication of Co/MgO-electrodes on a Si/SiO2_2 substrate and the subsequent dry transfer of a graphene-hBN-stack on top of this electrode structure where a large hBN flake is needed in order to diminish the ingress of solvents along the hBN-to-substrate interface. Interestingly, long spin lifetimes are observed despite the fact that both conductive scanning force microscopy and contact resistance measurements reveal the existence of conducting pinholes throughout the MgO spin injection/detection barriers. The observed enhancement of the spin lifetime in single layer graphene by a factor of 6 compared to previous devices exceeds current models of contact-induced spin relaxation which paves the way towards probing intrinsic spin properties of graphene.Comment: 8 pages, 5 figure

    Raman spectroscopy as probe of nanometer-scale strain variations in graphene

    Full text link
    Confocal Raman spectroscopy is a versatile, non-invasive investigation tool and a major workhorse for graphene characterization. Here we show that the experimentally observed Raman 2D line width is a measure of nanometer-scale strain variations in graphene. By investigating the relation between the G and 2D line at high magnetic fields we find that the 2D line width contains valuable information on nanometer-scale flatness and lattice deformations of graphene, making it a good quantity for classifying the structural quality of graphene even at zero magnetic field.Comment: 7 pages, 4 figure

    Nanosecond spin lifetimes in single- and few-layer graphene-hBN heterostructures at room temperature

    Full text link
    We present a new fabrication method of graphene spin-valve devices which yields enhanced spin and charge transport properties by improving both the electrode-to-graphene and graphene-to-substrate interface. First, we prepare Co/MgO spin injection electrodes onto Si++^{++}/SiO2_2. Thereafter, we mechanically transfer a graphene-hBN heterostructure onto the prepatterned electrodes. We show that room temperature spin transport in single-, bi- and trilayer graphene devices exhibit nanosecond spin lifetimes with spin diffusion lengths reaching 10μ\mum combined with carrier mobilities exceeding 20,000 cm2^2/Vs.Comment: 15 pages, 5 figure
    corecore