7 research outputs found

    A quantitative study of methanol/sorbitol co-feeding process of a Pichia pastoris

    Get PDF
    BACKGROUND: One of the main challenges for heterologous protein production by the methylotrophic yeast Pichia pastoris at large-scale is related to its high oxygen demand. A promising solution is a co-feeding strategy based on a methanol/sorbitol mixture during the induction phase. Nonetheless, a deep understanding of the cellular physiology and the regulation of the AOX1 promoter, used to govern heterologous protein production, during this co-feeding strategy is still scarce. RESULTS: Transient continuous cultures with a dilution rate of 0.023 h(-1) at 25°C were performed to quantitatively assess the benefits of a methanol/sorbitol co-feeding process with a Mut(+) strain in which the pAOX1-lacZ construct served as a reporter gene. Cell growth and metabolism, including O(2) consumption together with CO(2) and heat production were analyzed with regard to a linear change of methanol fraction in the mixed feeding media. In addition, the regulation of the promoter AOX1 was investigated by means of β-galactosidase measurements. Our results demonstrated that the cell-specific oxygen consumption (qO(2)) could be reduced by decreasing the methanol fraction in the feeding media. More interestingly, maximal β-galactosidase cell-specific activity (>7500 Miller unit) and thus, optimal pAOX1 induction, was achieved and maintained in the range of 0.45 ~ 0.75 C-mol/C-mol of methanol fraction. In addition, the qO(2) was reduced by 30% at most in those conditions. Based on a simplified metabolic network, metabolic flux analysis (MFA) was performed to quantify intracellular metabolic flux distributions during the transient continuous cultures, which further shed light on the advantages of methanol/sorbitol co-feeding process. Finally, our observations were further validated in fed-batch cultures. CONCLUSION: This study brings quantitative insight into the co-feeding process, which provides valuable data for the control of methanol/sorbitol co-feeding, aiming at enhancing biomass and heterologous protein productivities under given oxygen supply. According to our results, β-galactosidase productivity could be improved about 40% using the optimally mixed feed

    Use of Staby technology for development and production of DNA vaccines free of antibiotic resistance gene

    Full text link
    The appearance of new viruses and the cost of developing certain vaccines require that new vaccination strategies now have to be developed. DNA vaccination seems to be a particularly promising method. For this application, plasmid DNA is injected into the subject (man or animal). This plasmid DNA encodes an antigen that will be expressed by the cells of the subject. In addition to the antigen, the plasmid also encodes a resistance to an antibiotic, which is used during the construction and production steps of the plasmid. However, regulatory agencies (FDA, USDA and EMA) recommend to avoid the use of antibiotics resistance genes. Delphi Genetics developed the Staby(®) technology to replace the antibiotic-resistance gene by a selection system that relies on two bacterial genes. These genes are small in size (approximately 200 to 300 bases each) and consequently encode two small proteins. They are naturally present in the genomes of bacteria and on plasmids. The technology is already used successfully for production of recombinant proteins to achieve higher yields and without the need of antibiotics. In the field of DNA vaccines, we have now the first data validating the innocuousness of this Staby(®) technology for eukaryotic cells and the feasibility of an industrial production of an antibiotic-free DNA vaccine. Moreover, as a proof of concept, mice have been successfully vaccinated with our antibiotic-free DNA vaccine against a deadly disease, pseudorabies (induced by Suid herpesvirus-1)

    The presentation of neuroendocrine self-peptides in the thymus: An essential event for individual life and vertebrate survival

    Full text link
    Confirming Burnet’s early hypothesis, elimination of self-reactive T cells in the thymus was demonstrated in the late 80’s and an important question immediately arose about the nature of the immune self expressed in the thymus. Many genes encoding neuroendocrine-related and tissue-restricted antigens (TRAs) are transcribed in thymic epithelial cells (TECs). They are then processed for presentation by proteins of the major histocompatibility complex (MHC) expressed by TECs and thymic dendritic cells (DCs). MHC presentation of self-peptides in the thymus programs self-tolerance by two complementary mechanisms: 1° Negative selection of self-reactive ‘forbidden’ T-cell clones starting already in fetal life, and 2° generation of self-specific thymic T regulatory (tTreg) cells, mainly after birth. Many studies, including the discovery of the AutoImmune REgulator (AIRE) and fasciculation and elongation protein zeta family zinc finger (FEZF2) proteins, have shown that a defect in thymus central self-tolerance is the earliest event promoting autoimmunity. AIRE and FEZF2 control the level of transcription of many neuroendocrine self-peptides and TRAs in thymic epithelium. Furthermore, Aire and Fezf2 mutations are associated with development of autoimmunity in peripheral organs. The discovery of the intrathymic presentation of self-peptides has revolutionized our knowledge of immunology and is opening novel avenues for prevention/treatment of autoimmunity.THYDI

    A novel gene overexpressed in the prostate of castrated rats: hormonal regulation, relationship to apoptosis and to acquired prostatic cell androgen independence.

    Full text link
    We have identified a novel complementary DNA (cDNA) corresponding to a gene overexpressed in the rat ventral prostate after castration. This cDNA displays 89.4% identity with 453 bp of a mouse EST and 81.5% identity with 157 bp of a human EST and was named PARM-1 for prostatic androgen-repressed message-1. The complete cDNA is 1187 bp long and codes for a protein of 298 amino acids that contains four potential glycosylation sites and three half cystinyl residues. The PARM-1 gene was found to be expressed at quite low levels in most rat tissues including those of the urogenital tract. The kinetic of induction of PARM-1 gene in the prostate was highly correlated to the development of apoptosis in the whole organ. Supplementation of castrated animals with androgens reversed both the process of apoptosis and the overexpression of PARM-1 gene. Supplementation with estrogens did not result in an increase in the PARM-1 messenger RNA levels when compared with the castration alone. However, the treatment resulted in a more rapid return to intact levels in the castrated plus estrogen group. When apoptosis of testis and prostate was induced in vivo by hypophysectomy, it was found that PARM-1 was only overexpressed in the prostate. Therefore, PARM-1 seems to be regulated by androgens only in the prostate. Using in situ hybridization and immunohistological techniques, we have shown that PARM-1 gene product is found exclusively in the epithelial cells of involuting prostate. Analysis by flow cytometry of MAT LyLu epithelial cells transiently expressing PARM-1 protein did not allow us to demonstrate a direct effect of PARM-1 gene overexpression on the programmed death of the transfected cells. Treatment of MAT LyLu cells by transforming growth factor-beta induced apoptosis but had no effect on PARM-1 production. However PARM-1 protein has been detected by Western blotting in various cell lines such as MAT LyLu, MAT Lu, and PIF, which are androgen independent. This would suggest that PARM-1 gene product would be a marker for acquired androgen-independence of these tumor cells

    Tnp-470, a Potent Angiogenesis Inhibitor, Amplifies Human T Lymphocyte Activation through an Induction of Nuclear Factor-Kappab, Nuclear Factor-at, and Activation Protein-1 Transcription Factors

    Full text link
    TNP-470, an angiogenesis inhibitor derived from fumagillin, is foreseen as a promising anti-cancer drug. Its effectiveness to restrain tumor growth and its lack of major side effects have been demonstrated in several animal models and have led the drug to reach phase III clinical trials. Beside its antiangiogenesis activities, TNP-470 exhibits several effects on the immune system. We had shown previously that TNP-470 stimulated B lymphocyte proliferation through an action on T cells. In this study, we examined the cellular and molecular modifications induced by TNP-470 in normal human T lymphocytes. Transmission electron microscopic examination of PHA/TNP-470-treated T cells revealed significant morphologic modifications when compared with PHA-treated control T cells. TNP-470 induced indeed an important and significant increase of the nuclear size as well as major nuclear chromatin decondensation. This observation indicated that TNP-470 amplified T-cell activation and led us to investigate its effects on the activation of transcription factors involved in T-cell activation. Using electrophoretic mobility shift assays, we have demonstrated that TNP-470 amplifies and extends the DNA-binding activity of nuclear factor-AT, nuclear factor-KB, and activation protein-1 in T cells. Furthermore, the angioinhibin significantly increased the secretion of IL-2 and IL-4. Our data demonstrate that TNP-470 amplifies the activation of T cells. This effect, whose molecular mechanisms remain to be elucidated, has to be taken into account in the assessment of the antitumor effect of the drug
    corecore