36 research outputs found

    Reactivity Studies on [Cpā€²FeI]<sub>2</sub>: Monomeric Amido, Phenoxo, and Alkyl Complexes

    No full text
    A series of monomeric monoĀ­(cyclopentadienyl) iron amido, phenoxo, and alkyl complexes were synthesized, and their structure and reactivity are presented. The ironĀ­(II) centers in these 14VE one-legged piano stool complexes are high spin (<i>S</i> = 2) in solid state and solution independent of solvent. The silylamide compound [Cpā€²FeNĀ­(SiMe<sub>3</sub>)<sub>2</sub>] (<b>2a</b>, Cpā€² = 1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>) is an excellent starting material for the reaction with more acidic substrates such as phenols. Sterically encumbered phenols 2,6-(Me<sub>3</sub>C)<sub>2</sub>(4-R)Ā­C<sub>6</sub>H<sub>2</sub>OH (R = H, Me, and <i>t</i>Bu) were investigated. In all cases monomeric iron phenoxo half-sandwich complexes [Cpā€²FeORā€²] (<b>4-R</b>) are initially formed. Rearrangement of <b>4-R</b> to the diamagnetic oxocyclohexadienyl complex [Cpā€²FeĀ­(Ī·<sup>5</sup>-Oī—»C<sub>6</sub>H<sub>2</sub>Rā€²<sub>2</sub>Rā€³)] (<b>5-R</b>) is observed for 2,6-(Me<sub>3</sub>C)<sub>2</sub>(4-R)Ā­C<sub>6</sub>H<sub>2</sub>OH (R = H and Me) and the Gibbs free enthalpy of activation (Ī”<i>G</i><sup>ā§§</sup>) was determined. In contrast this rearrangement is inhibited when the 4-position is blocked by a <i>t</i>Bu group. Removing the steric bulk from the 2,6-positions leads to the formation of a Ī¼-phenoxo dimer, [Cpā€²FeĀ­(Ī¼-OC<sub>6</sub>H<sub>3</sub><i>t</i>Bu<sub>2</sub>-3,5)]<sub>2</sub> (<b>5</b>). Density functional theory (DFT) was used to further elucidate the structureā€“reactivity relationship in these molecules. The one-legged piano stool anilido complex [Cpā€²FeĀ­(NHC<sub>6</sub>H<sub>2</sub><i>t</i>Bu<sub>3</sub>-2,4,6)] (<b>7</b>) is not accessible via acidā€“base reaction between <b>2a</b> and H<sub>2</sub>NC<sub>6</sub>H<sub>2</sub><i>t</i>Bu<sub>3</sub>-2,4,6, but can be prepared by conventional salt metathesis reaction from [Cpā€²FeI]<sub>2</sub> and [LiĀ­(NHC<sub>6</sub>H<sub>2</sub><i>t</i>Bu<sub>3</sub>-2,4,6)Ā­(OEt<sub>2</sub>)]<sub>2</sub>. In contrast, reaction of <b>2a</b> with Ph<sub>2</sub>NH yields the bimetallic [Cpā€²FeĀ­(<i>N,C</i>-Īŗ<sup>1</sup>,Ī·<sup>5</sup>-C<sub>6</sub>H<sub>5</sub>NPh)Ā­FeĀ­(<i>N</i>-Īŗ<sup>1</sup>-NPh<sub>2</sub>)Ā­Cpā€²] (<b>8</b>) which combines two iron centers in the same oxidation state (+2), but different spin-states (<i>S</i> = 0 and <i>S</i> = 2) which is reflected in very different CpĀ­(cent)ā€“Fe distances of 1.68 and 2.04 ƅ, respectively. A monomeric iron alkyl half-sandwich complex [Cpā€²FeCHĀ­(SiMe<sub>3</sub>)<sub>2</sub>] (<b>9</b>) was prepared that exhibits no reactivity toward H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub> or N<sub>2</sub>O. This behavior might be rationalized by a spin-state induced reaction barrier. However, <b>9</b> reacts in the presence of CO to the iron acyl-complex [Cpā€²FeĀ­(CO)<sub>2</sub>(CĀ­(O)Ā­CHĀ­(SiMe<sub>3</sub>)<sub>2</sub>)] (<b>10</b>) and with a CO/H<sub>2</sub> mixture [Cpā€²FeĀ­(CO)<sub>2</sub>]<sub>2</sub> (<b>11</b>) and CH<sub>2</sub>(SiMe<sub>3</sub>)<sub>2</sub> are formed

    Reactivity Studies on [Cpā€²FeI]<sub>2</sub>: Monomeric Amido, Phenoxo, and Alkyl Complexes

    No full text
    A series of monomeric monoĀ­(cyclopentadienyl) iron amido, phenoxo, and alkyl complexes were synthesized, and their structure and reactivity are presented. The ironĀ­(II) centers in these 14VE one-legged piano stool complexes are high spin (<i>S</i> = 2) in solid state and solution independent of solvent. The silylamide compound [Cpā€²FeNĀ­(SiMe<sub>3</sub>)<sub>2</sub>] (<b>2a</b>, Cpā€² = 1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>) is an excellent starting material for the reaction with more acidic substrates such as phenols. Sterically encumbered phenols 2,6-(Me<sub>3</sub>C)<sub>2</sub>(4-R)Ā­C<sub>6</sub>H<sub>2</sub>OH (R = H, Me, and <i>t</i>Bu) were investigated. In all cases monomeric iron phenoxo half-sandwich complexes [Cpā€²FeORā€²] (<b>4-R</b>) are initially formed. Rearrangement of <b>4-R</b> to the diamagnetic oxocyclohexadienyl complex [Cpā€²FeĀ­(Ī·<sup>5</sup>-Oī—»C<sub>6</sub>H<sub>2</sub>Rā€²<sub>2</sub>Rā€³)] (<b>5-R</b>) is observed for 2,6-(Me<sub>3</sub>C)<sub>2</sub>(4-R)Ā­C<sub>6</sub>H<sub>2</sub>OH (R = H and Me) and the Gibbs free enthalpy of activation (Ī”<i>G</i><sup>ā§§</sup>) was determined. In contrast this rearrangement is inhibited when the 4-position is blocked by a <i>t</i>Bu group. Removing the steric bulk from the 2,6-positions leads to the formation of a Ī¼-phenoxo dimer, [Cpā€²FeĀ­(Ī¼-OC<sub>6</sub>H<sub>3</sub><i>t</i>Bu<sub>2</sub>-3,5)]<sub>2</sub> (<b>5</b>). Density functional theory (DFT) was used to further elucidate the structureā€“reactivity relationship in these molecules. The one-legged piano stool anilido complex [Cpā€²FeĀ­(NHC<sub>6</sub>H<sub>2</sub><i>t</i>Bu<sub>3</sub>-2,4,6)] (<b>7</b>) is not accessible via acidā€“base reaction between <b>2a</b> and H<sub>2</sub>NC<sub>6</sub>H<sub>2</sub><i>t</i>Bu<sub>3</sub>-2,4,6, but can be prepared by conventional salt metathesis reaction from [Cpā€²FeI]<sub>2</sub> and [LiĀ­(NHC<sub>6</sub>H<sub>2</sub><i>t</i>Bu<sub>3</sub>-2,4,6)Ā­(OEt<sub>2</sub>)]<sub>2</sub>. In contrast, reaction of <b>2a</b> with Ph<sub>2</sub>NH yields the bimetallic [Cpā€²FeĀ­(<i>N,C</i>-Īŗ<sup>1</sup>,Ī·<sup>5</sup>-C<sub>6</sub>H<sub>5</sub>NPh)Ā­FeĀ­(<i>N</i>-Īŗ<sup>1</sup>-NPh<sub>2</sub>)Ā­Cpā€²] (<b>8</b>) which combines two iron centers in the same oxidation state (+2), but different spin-states (<i>S</i> = 0 and <i>S</i> = 2) which is reflected in very different CpĀ­(cent)ā€“Fe distances of 1.68 and 2.04 ƅ, respectively. A monomeric iron alkyl half-sandwich complex [Cpā€²FeCHĀ­(SiMe<sub>3</sub>)<sub>2</sub>] (<b>9</b>) was prepared that exhibits no reactivity toward H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub> or N<sub>2</sub>O. This behavior might be rationalized by a spin-state induced reaction barrier. However, <b>9</b> reacts in the presence of CO to the iron acyl-complex [Cpā€²FeĀ­(CO)<sub>2</sub>(CĀ­(O)Ā­CHĀ­(SiMe<sub>3</sub>)<sub>2</sub>)] (<b>10</b>) and with a CO/H<sub>2</sub> mixture [Cpā€²FeĀ­(CO)<sub>2</sub>]<sub>2</sub> (<b>11</b>) and CH<sub>2</sub>(SiMe<sub>3</sub>)<sub>2</sub> are formed

    Synthesis, Structure, and Reactivity of a Thorium Metallocene Containing a 2,2ā€²-Bipyridyl Ligand

    No full text
    The reduction of [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]<sub>2</sub>ThCl<sub>2</sub> (<b>1</b>) with potassium graphite in the presence of 2,2ā€²-bipyridine gives the purple thorium bipy metallocene [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]<sub>2</sub>ThĀ­(bipy) (<b>2</b>) in good yield. Complex <b>2</b> has been characterized by various spectroscopic techniques, elemental analysis, and single-crystal X-ray diffraction. Complex <b>2</b> is a good synthon for low-valent thorium, as shown by the reactivity with silver halides, trityl chloride, pyridine-<i>N</i>-oxide, RN<sub>3</sub>, 9-diazofluorene, and diphenyl diselenide, yielding the halide metallocenes [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]<sub>2</sub>ThX<sub>2</sub> (X = Cl (<b>1</b>), F (<b>3</b>), Br (<b>4</b>)), oxo metallocene [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]<sub>2</sub>ThOĀ­(py) (<b>5</b>), imido metallocenes [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]<sub>2</sub>Thī—»NR (R = <i>p</i>-tolyl (<b>6</b>), Ph<sub>3</sub>C (<b>7</b>), Me<sub>3</sub>Si (<b>8</b>), (9-C<sub>13</sub>H<sub>8</sub>)ī—»N (<b>9</b>)), and selenido complex [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]Ā­ThĀ­(SePh)<sub>3</sub>(bipy) (<b>10a</b>), in quantitative conversions

    Synthesis, Structure, and Reactivity of a Thorium Metallocene Containing a 2,2ā€²-Bipyridyl Ligand

    No full text
    The reduction of [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]<sub>2</sub>ThCl<sub>2</sub> (<b>1</b>) with potassium graphite in the presence of 2,2ā€²-bipyridine gives the purple thorium bipy metallocene [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]<sub>2</sub>ThĀ­(bipy) (<b>2</b>) in good yield. Complex <b>2</b> has been characterized by various spectroscopic techniques, elemental analysis, and single-crystal X-ray diffraction. Complex <b>2</b> is a good synthon for low-valent thorium, as shown by the reactivity with silver halides, trityl chloride, pyridine-<i>N</i>-oxide, RN<sub>3</sub>, 9-diazofluorene, and diphenyl diselenide, yielding the halide metallocenes [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]<sub>2</sub>ThX<sub>2</sub> (X = Cl (<b>1</b>), F (<b>3</b>), Br (<b>4</b>)), oxo metallocene [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]<sub>2</sub>ThOĀ­(py) (<b>5</b>), imido metallocenes [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]<sub>2</sub>Thī—»NR (R = <i>p</i>-tolyl (<b>6</b>), Ph<sub>3</sub>C (<b>7</b>), Me<sub>3</sub>Si (<b>8</b>), (9-C<sub>13</sub>H<sub>8</sub>)ī—»N (<b>9</b>)), and selenido complex [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]Ā­ThĀ­(SePh)<sub>3</sub>(bipy) (<b>10a</b>), in quantitative conversions

    Thorium Oxo and Sulfido Metallocenes: Synthesis, Structure, Reactivity, and Computational Studies

    No full text
    The synthesis, structure, and reactivity of thorium oxo and sulfido metallocenes have been comprehensively studied. Heating of an equimolar mixture of the dimethyl metallocene [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]<sub>2</sub>ThMe<sub>2</sub> (<b>2</b>) and the bis-amide metallocene [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]<sub>2</sub>Th(NH-<i>p</i>-tolyl)<sub>2</sub> (<b>3</b>) in refluxing toluene results in the base-free imido thorium metallocene, [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]<sub>2</sub>Thī—»N(<i>p</i>-tolyl) (<b>4</b>), which is a useful precursor for the preparation of oxo and sulfido thorium metallocenes [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]<sub>2</sub>Thī—»E (E = O (<b>5</b>) and S (<b>15</b>)) by cycloadditionā€“elimination reaction with Ph<sub>2</sub>Cī—»E (E = O, S) or CS<sub>2</sub>. The oxo metallocene <b>5</b> acts as a nucleophile toward alkylsilyl halides, while sulfido metallocene <b>15</b> does not. The oxo metallocene <b>5</b> and sulfido metallocene <b>15</b> undergo a [2 + 2] cycloaddition reaction with Ph<sub>2</sub>CO, CS<sub>2</sub>, or Ph<sub>2</sub>CS, but they show no reactivity with alkynes. Density functional theory (DFT) studies provide insights into the subtle interplay between steric and electronic effects and rationalize the experimentally observed reactivity patterns. A comparison between Th, U, and group 4 elements shows that Th<sup>4+</sup> behaves more like an actinide than a transition metal

    Thorium Oxo and Sulfido Metallocenes: Synthesis, Structure, Reactivity, and Computational Studies

    No full text
    The synthesis, structure, and reactivity of thorium oxo and sulfido metallocenes have been comprehensively studied. Heating of an equimolar mixture of the dimethyl metallocene [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]<sub>2</sub>ThMe<sub>2</sub> (<b>2</b>) and the bis-amide metallocene [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]<sub>2</sub>Th(NH-<i>p</i>-tolyl)<sub>2</sub> (<b>3</b>) in refluxing toluene results in the base-free imido thorium metallocene, [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]<sub>2</sub>Thī—»N(<i>p</i>-tolyl) (<b>4</b>), which is a useful precursor for the preparation of oxo and sulfido thorium metallocenes [Ī·<sup>5</sup>-1,2,4-(Me<sub>3</sub>C)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>]<sub>2</sub>Thī—»E (E = O (<b>5</b>) and S (<b>15</b>)) by cycloadditionā€“elimination reaction with Ph<sub>2</sub>Cī—»E (E = O, S) or CS<sub>2</sub>. The oxo metallocene <b>5</b> acts as a nucleophile toward alkylsilyl halides, while sulfido metallocene <b>15</b> does not. The oxo metallocene <b>5</b> and sulfido metallocene <b>15</b> undergo a [2 + 2] cycloaddition reaction with Ph<sub>2</sub>CO, CS<sub>2</sub>, or Ph<sub>2</sub>CS, but they show no reactivity with alkynes. Density functional theory (DFT) studies provide insights into the subtle interplay between steric and electronic effects and rationalize the experimentally observed reactivity patterns. A comparison between Th, U, and group 4 elements shows that Th<sup>4+</sup> behaves more like an actinide than a transition metal

    Stability and Dynamic Processes in 16VE Iridium(III) Ethyl Hydride and Rhodium(I) Ļƒā€‘Ethane Complexes: Experimental and Computational Studies

    No full text
    IridiumĀ­(I) and rhodiumĀ­(I) ethyl complexes, (PONOP)Ā­MĀ­(C<sub>2</sub>H<sub>5</sub>) (M = Ir (<b>1-Et</b>), Rh (<b>2-Et</b>)) and the iridiumĀ­(I) propyl complex (PONOP)Ā­IrĀ­(C<sub>3</sub>H<sub>7</sub>) (<b>1-Pr</b>), where PONOP is 2,6-(<i>t</i>Bu<sub>2</sub>PO)<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N, have been prepared. Low-temperature protonation of the Ir complexes yields the alkyl hydrides, (PONOP)Ā­IrĀ­(H)Ā­(R) (<b>1-(H)Ā­(Et)</b><sup><b>+</b></sup> and <b>1-(H)Ā­(Pr)</b><sup><b>+</b></sup>), respectively. Dynamic <sup>1</sup>H NMR characterization of <b>1-(H)Ā­(Et)</b><sup><b>+</b></sup> establishes site exchange between the Irā€“<i>H</i> and Irā€“C<i>H</i><sub>2</sub> protons (Ī”<i>G</i><sub>exH</sub><sup>ā€”</sup>(āˆ’110 Ā°C) = 7.2(1) kcal/mol), pointing to a Ļƒ-ethane intermediate. By dynamic <sup>13</sup>C NMR spectroscopy, the exchange barrier between the Ī± and Ī² carbons (ā€œchain-walkingā€) was measured (Ī”<i>G</i><sub>exC</sub><sup>ā€”</sup>(āˆ’110 Ā°C) = 8.1(1) kcal/mol). The barrier for ethane loss is 17.4(1) kcal/mol (āˆ’40 Ā°C), to be compared with the reported barrier to methane loss in <b>1-(H)Ā­(Me)</b><sup><b>+</b></sup> of 22.4 kcal/mol (22 Ā°C). A rhodium Ļƒ-ethane complex, (PONOP)Ā­RhĀ­(EtH) (<b>2-(EtH)</b><sup><b>+</b></sup>), was prepared by protonation of <b>2-Et</b> at āˆ’150 Ā°C. The barrier for ethane loss (Ī”<i>G</i><sub>dec</sub><sup>ā€”</sup>(āˆ’132 Ā°C) = 10.9(2) kcal/mol) is lower than for the methane complex, <b>2-(MeH)</b><sup><b>+</b></sup>, (Ī”<i>G</i><sub>dec</sub><sup>ā€”</sup>(āˆ’87 Ā°C) = 14.5(4) kcal/mol). Full spectroscopic characterization of <b>2-(EtH)</b><sup><b>+</b></sup> is reported, a key feature of which is the upfield signal at āˆ’31.2 ppm for the coordinated CH<sub>3</sub> group in the <sup>13</sup>C NMR spectrum. The exchange barrier of the hydrogens of the coordinated methyl group is too low to be measured, but the chain-walking barrier of 7.2(1) kcal/mol (āˆ’132 Ā°C) is observable by <sup>13</sup>C NMR. The coordination mode of the alkane ligand and the exchange pathways for the Rh and Ir complexes are evaluated by DFT studies. On the basis of the computational studies, it is proposed that chain-walking occurs by different mechanisms: for Rh, the lowest energy path involves a Ī·<sup>2</sup>-ethane transition state, while for Ir, the lowest energy exchange pathway proceeds through the symmetrical ethylene dihydride complex

    Stability and Dynamic Processes in 16VE Iridium(III) Ethyl Hydride and Rhodium(I) Ļƒā€‘Ethane Complexes: Experimental and Computational Studies

    No full text
    IridiumĀ­(I) and rhodiumĀ­(I) ethyl complexes, (PONOP)Ā­MĀ­(C<sub>2</sub>H<sub>5</sub>) (M = Ir (<b>1-Et</b>), Rh (<b>2-Et</b>)) and the iridiumĀ­(I) propyl complex (PONOP)Ā­IrĀ­(C<sub>3</sub>H<sub>7</sub>) (<b>1-Pr</b>), where PONOP is 2,6-(<i>t</i>Bu<sub>2</sub>PO)<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N, have been prepared. Low-temperature protonation of the Ir complexes yields the alkyl hydrides, (PONOP)Ā­IrĀ­(H)Ā­(R) (<b>1-(H)Ā­(Et)</b><sup><b>+</b></sup> and <b>1-(H)Ā­(Pr)</b><sup><b>+</b></sup>), respectively. Dynamic <sup>1</sup>H NMR characterization of <b>1-(H)Ā­(Et)</b><sup><b>+</b></sup> establishes site exchange between the Irā€“<i>H</i> and Irā€“C<i>H</i><sub>2</sub> protons (Ī”<i>G</i><sub>exH</sub><sup>ā€”</sup>(āˆ’110 Ā°C) = 7.2(1) kcal/mol), pointing to a Ļƒ-ethane intermediate. By dynamic <sup>13</sup>C NMR spectroscopy, the exchange barrier between the Ī± and Ī² carbons (ā€œchain-walkingā€) was measured (Ī”<i>G</i><sub>exC</sub><sup>ā€”</sup>(āˆ’110 Ā°C) = 8.1(1) kcal/mol). The barrier for ethane loss is 17.4(1) kcal/mol (āˆ’40 Ā°C), to be compared with the reported barrier to methane loss in <b>1-(H)Ā­(Me)</b><sup><b>+</b></sup> of 22.4 kcal/mol (22 Ā°C). A rhodium Ļƒ-ethane complex, (PONOP)Ā­RhĀ­(EtH) (<b>2-(EtH)</b><sup><b>+</b></sup>), was prepared by protonation of <b>2-Et</b> at āˆ’150 Ā°C. The barrier for ethane loss (Ī”<i>G</i><sub>dec</sub><sup>ā€”</sup>(āˆ’132 Ā°C) = 10.9(2) kcal/mol) is lower than for the methane complex, <b>2-(MeH)</b><sup><b>+</b></sup>, (Ī”<i>G</i><sub>dec</sub><sup>ā€”</sup>(āˆ’87 Ā°C) = 14.5(4) kcal/mol). Full spectroscopic characterization of <b>2-(EtH)</b><sup><b>+</b></sup> is reported, a key feature of which is the upfield signal at āˆ’31.2 ppm for the coordinated CH<sub>3</sub> group in the <sup>13</sup>C NMR spectrum. The exchange barrier of the hydrogens of the coordinated methyl group is too low to be measured, but the chain-walking barrier of 7.2(1) kcal/mol (āˆ’132 Ā°C) is observable by <sup>13</sup>C NMR. The coordination mode of the alkane ligand and the exchange pathways for the Rh and Ir complexes are evaluated by DFT studies. On the basis of the computational studies, it is proposed that chain-walking occurs by different mechanisms: for Rh, the lowest energy path involves a Ī·<sup>2</sup>-ethane transition state, while for Ir, the lowest energy exchange pathway proceeds through the symmetrical ethylene dihydride complex

    Stability and Dynamic Processes in 16VE Iridium(III) Ethyl Hydride and Rhodium(I) Ļƒā€‘Ethane Complexes: Experimental and Computational Studies

    No full text
    IridiumĀ­(I) and rhodiumĀ­(I) ethyl complexes, (PONOP)Ā­MĀ­(C<sub>2</sub>H<sub>5</sub>) (M = Ir (<b>1-Et</b>), Rh (<b>2-Et</b>)) and the iridiumĀ­(I) propyl complex (PONOP)Ā­IrĀ­(C<sub>3</sub>H<sub>7</sub>) (<b>1-Pr</b>), where PONOP is 2,6-(<i>t</i>Bu<sub>2</sub>PO)<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N, have been prepared. Low-temperature protonation of the Ir complexes yields the alkyl hydrides, (PONOP)Ā­IrĀ­(H)Ā­(R) (<b>1-(H)Ā­(Et)</b><sup><b>+</b></sup> and <b>1-(H)Ā­(Pr)</b><sup><b>+</b></sup>), respectively. Dynamic <sup>1</sup>H NMR characterization of <b>1-(H)Ā­(Et)</b><sup><b>+</b></sup> establishes site exchange between the Irā€“<i>H</i> and Irā€“C<i>H</i><sub>2</sub> protons (Ī”<i>G</i><sub>exH</sub><sup>ā€”</sup>(āˆ’110 Ā°C) = 7.2(1) kcal/mol), pointing to a Ļƒ-ethane intermediate. By dynamic <sup>13</sup>C NMR spectroscopy, the exchange barrier between the Ī± and Ī² carbons (ā€œchain-walkingā€) was measured (Ī”<i>G</i><sub>exC</sub><sup>ā€”</sup>(āˆ’110 Ā°C) = 8.1(1) kcal/mol). The barrier for ethane loss is 17.4(1) kcal/mol (āˆ’40 Ā°C), to be compared with the reported barrier to methane loss in <b>1-(H)Ā­(Me)</b><sup><b>+</b></sup> of 22.4 kcal/mol (22 Ā°C). A rhodium Ļƒ-ethane complex, (PONOP)Ā­RhĀ­(EtH) (<b>2-(EtH)</b><sup><b>+</b></sup>), was prepared by protonation of <b>2-Et</b> at āˆ’150 Ā°C. The barrier for ethane loss (Ī”<i>G</i><sub>dec</sub><sup>ā€”</sup>(āˆ’132 Ā°C) = 10.9(2) kcal/mol) is lower than for the methane complex, <b>2-(MeH)</b><sup><b>+</b></sup>, (Ī”<i>G</i><sub>dec</sub><sup>ā€”</sup>(āˆ’87 Ā°C) = 14.5(4) kcal/mol). Full spectroscopic characterization of <b>2-(EtH)</b><sup><b>+</b></sup> is reported, a key feature of which is the upfield signal at āˆ’31.2 ppm for the coordinated CH<sub>3</sub> group in the <sup>13</sup>C NMR spectrum. The exchange barrier of the hydrogens of the coordinated methyl group is too low to be measured, but the chain-walking barrier of 7.2(1) kcal/mol (āˆ’132 Ā°C) is observable by <sup>13</sup>C NMR. The coordination mode of the alkane ligand and the exchange pathways for the Rh and Ir complexes are evaluated by DFT studies. On the basis of the computational studies, it is proposed that chain-walking occurs by different mechanisms: for Rh, the lowest energy path involves a Ī·<sup>2</sup>-ethane transition state, while for Ir, the lowest energy exchange pathway proceeds through the symmetrical ethylene dihydride complex

    Small-Molecule Activation Mediated by a Uranium Bipyridyl Metallocene

    No full text
    Addition of potassium graphite (KC<sub>8</sub>) to a solution of (Ī·<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>UCl<sub>2</sub> (<b>1</b>) and 2,2ā€²-bipyridine (bipy) gives the uranium bipyridyl metallocene (Ī·<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>UĀ­(bipy) (<b>2</b>) in good yield. In complex <b>2</b> a bipy radical anion is coordinated to a UĀ­(III) atom, and it is therefore an ideal starting material for small-molecule activation: e.g., it serves as a synthetic equivalent for the (Ī·<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>U<sup>II</sup> fragment on treatment with conjugated alkynes and a variety of heterounsaturated molecules such as imines, carbodiimide, organic azides, hydrazine, and azo derivatives. Alternatively, it may also react with aldehydes, ketones, nitriles, and Ī±,Ī²-unsaturated reagents such as <i>p</i>-ClPhCHO, (CH<sub>2</sub>)<sub>5</sub>CO, PhCN, and methyl methacrylate (MMA), forming the Cā€“C bond coupling products (Ī·<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>UĀ­[(bipy)Ā­(<i>p</i>-ClPhCHO)] (<b>10</b>), (Ī·<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>UĀ­[(bipy)Ā­{(CH<sub>2</sub>)<sub>5</sub>CO}] (<b>11</b>), (Ī·<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>UĀ­[(bipy)Ā­(PhCN)] (<b>12</b>), (Ī·<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>UĀ­[(bipy)Ā­{CH<sub>2</sub>ī—»CĀ­(Me)Ā­COĀ­(OMe)] (<b>13a</b>), and [(Ī·<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>UĀ­{OCĀ­(OMe)ī—»CĀ­(Me)Ā­CH<sub>2</sub>ā€“3-bipy}]<sub>2</sub> (<b>13b</b>), respectively, in quantitative conversion. Furthermore, addition of CuI to complex <b>2</b> induces a single-electron-transfer process to form the uraniumĀ­(III) iodide complex (Ī·<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>UĀ­(I)Ā­(bipy) (<b>14</b>)
    corecore