66 research outputs found

    Novel Gd Nanoparticles Enhance Vascular Contrast for High-Resolution Magnetic Resonance Imaging

    Get PDF
    Gadolinium (Gd), with its 7 unpaired electrons in 4f orbitals that provide a very large magnetic moment, is proven to be among the best agents for contrast enhanced MRI. Unfortunately, the most potent MR contrast agent based on Gd requires relatively high doses of Gd. The Gd-chelated to diethylene-triamine-penta-acetic acid (DTPA), or other derivatives (at 0.1 mmole/kg recommended dose), distribute broadly into tissues and clear through the kidney. These contrast agents carry the risk of Nephrogenic Systemic Fibrosis (NSF), particularly in kidney impaired subjects. Thus, Gd contrast agents that produce higher resolution images using a much lower Gd dose could address both imaging sensitivity and Gd safety.To determine whether a biocompatible lipid nanoparticle with surface bound Gd can improve MRI contrast sensitivity, we constructed Gd-lipid nanoparticles (Gd-LNP) containing lipid bound DTPA and Gd. The Gd-LNP were intravenously administered to rats and MR images collected. We found that Gd in Gd-LNP produced a greater than 33-fold higher longitudinal (T(1)) relaxivity, r(1), constant than the current FDA approved Gd-chelated contrast agents. Intravenous administration of these Gd-LNP at only 3% of the recommended clinical Gd dose produced MRI signal-to-noise ratios of greater than 300 in all vasculatures. Unlike current Gd contrast agents, these Gd-LNP stably retained Gd in normal vasculature, and are eliminated predominately through the biliary, instead of the renal system. Gd-LNP did not appear to accumulate in the liver or kidney, and was eliminated completely within 24 hrs.The novel Gd-nanoparticles provide high quality contrast enhanced vascular MRI at 97% reduced dose of Gd and do not rely on renal clearance. This new agent is likely to be suitable for patients exhibiting varying degrees of renal impairment. The simple and adaptive nanoparticle design could accommodate ligand or receptor coating for drug delivery optimization and in vivo drug-target definition in system biology profiling, increasing the margin of safety in treatment of cancers and other diseases

    Functional magnetic resonance imaging outcomes from a comprehensive magnetic resonance study of children with fetal alcohol spectrum disorders

    Get PDF
    A comprehensive neuropsychological/psychiatric, MR imaging, (MRI), MR spectroscopy (MRS), and functional MRI (fMRI) assessment was administered to children with fetal alcohol spectrum disorders (FASD) to determine if global and/or focal abnormalities could be identified, and distinguish diagnostic subclassifications across the spectrum. The four study groups included: 1. FAS/Partial FAS; 2. Static Encephalopathy/Alcohol Exposed (SE/AE); 3. Neurobehavioral Disorder/Alcohol Exposed (ND/AE); and 4. healthy peers with no prenatal alcohol exposure. fMRI outcomes are reported here. The neuropsychological/psychiatric, MRI, and MRS outcomes are reported separately. fMRI was used to assess activation in seven brain regions during performance of N-back working memory tasks. Children across the full spectrum of FASD exhibited significant working memory deficits and altered activation patterns in brain regions that are known to be involved in working memory. These results demonstrate the potential research and diagnostic value of this non-invasive MR tool in the field of FASD

    Dynamic contrast-enhanced magnetic resonance imaging of tumor-induced lymph flow.

    Get PDF
    The growth of metastatic tumors in mice can result in markedly increased lymph flow through tumor-draining lymph nodes (LNs), which is associated with LN lymphangiogenesis. A dynamic magnetic resonance imaging (MRI) assay was developed, which uses low-molecular weight gadolinium contrast agent to label the lymphatic drainage, to visualize and quantify tumor-draining lymph flow in vivo in mice bearing metastatic melanomas. Tumor-bearing mice showed greatly increased lymph flow into and through draining LNs and into the bloodstream. Quantitative analysis established that both the amount and the rate of lymph flow through draining LNs are significantly increased in melanoma-bearing mice. In addition, the rate of appearance of contrast media in the bloodstream was significantly increased in mice bearing melanomas. These results indicate that gadolinium-based contrast-enhanced MRI provides a noninvasive assay for high-resolution spatial identification and mapping of lymphatic drainage and for dynamic measurement of changes in lymph flow associated with cancer or lymphatic dysfunction in mice. Low-molecular weight gadolinium contrast is already used for 1.5-T MRI scanning in humans, which should facilitate translation of this imaging assay

    Transfection of Neuroprogenitor Cells with Iron Nanoparticles for Magnetic Resonance Imaging Tracking: Cell Viability, Differentiation, and Intracellular Localization

    Full text link
    Magnetic resonance imaging (MRI) can track labeled cells in the brain. The use of hemagglutinating virus of Japan envelopes (HVJ-Es) to effectively introduce the contrast agent to neural progenitor cells (NPCs) is limited to date despite their high NPC affinity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41579/1/11307_2005_Article_8.pd

    Gadobenate dimeglumine-enhanced MR imaging of patients with CNS diseases

    No full text

    Neuroradiology seminar: Aims and objectives

    No full text
    corecore