7 research outputs found

    Deep Learning With Sentiment Inference For Discourse-Oriented Opinion Analysis

    Get PDF
    Opinions are omnipresent in written and spoken text ranging from editorials, reviews, blogs, guides, and informal conversations to written and broadcast news. However, past research in NLP has mainly addressed explicit opinion expressions, ignoring implicit opinions. As a result, research in opinion analysis has plateaued at a somewhat superficial level, providing methods that only recognize what is explicitly said and do not understand what is implied. In this dissertation, we develop machine learning models for two tasks that presumably support propagation of sentiment in discourse, beyond one sentence. The first task we address is opinion role labeling, i.e.\ the task of detecting who expressed a given attitude toward what or who. The second task is abstract anaphora resolution, i.e.\ the task of finding a (typically) non-nominal antecedent of pronouns and noun phrases that refer to abstract objects like facts, events, actions, or situations in the preceding discourse. We propose a neural model for labeling of opinion holders and targets and circumvent the problems that arise from the limited labeled data. In particular, we extend the baseline model with different multi-task learning frameworks. We obtain clear performance improvements using semantic role labeling as the auxiliary task. We conduct a thorough analysis to demonstrate how multi-task learning helps, what has been solved for the task, and what is next. We show that future developments should improve the ability of the models to capture long-range dependencies and consider other auxiliary tasks such as dependency parsing or recognizing textual entailment. We emphasize that future improvements can be measured more reliably if opinion expressions with missing roles are curated and if the evaluation considers all mentions in opinion role coreference chains as well as discontinuous roles. To the best of our knowledge, we propose the first abstract anaphora resolution model that handles the unrestricted phenomenon in a realistic setting. We cast abstract anaphora resolution as the task of learning attributes of the relation that holds between the sentence with the abstract anaphor and its antecedent. We propose a Mention-Ranking siamese-LSTM model (MR-LSTM) for learning what characterizes the mentioned relation in a data-driven fashion. The current resources for abstract anaphora resolution are quite limited. However, we can train our models without conventional data for abstract anaphora resolution. In particular, we can train our models on many instances of antecedent-anaphoric sentence pairs. Such pairs can be automatically extracted from parsed corpora by searching for a common construction which consists of a verb with an embedded sentence (complement or adverbial), applying a simple transformation that replaces the embedded sentence with an abstract anaphor, and using the cut-off embedded sentence as the antecedent. We refer to the extracted data as silver data. We evaluate our MR-LSTM models in a realistic task setup in which models need to rank embedded sentences and verb phrases from the sentence with the anaphor as well as a few preceding sentences. We report the first benchmark results on an abstract anaphora subset of the ARRAU corpus \citep{uryupina_et_al_2016} which presents a greater challenge due to a mixture of nominal and pronominal anaphors as well as a greater range of confounders. We also use two additional evaluation datasets: a subset of the CoNLL-12 shared task dataset \citep{pradhan_et_al_2012} and a subset of the ASN corpus \citep{kolhatkar_et_al_2013_crowdsourcing}. We show that our MR-LSTM models outperform the baselines in all evaluation datasets, except for events in the CoNLL-12 dataset. We conclude that training on the small-scale gold data works well if we encounter the same type of anaphors at the evaluation time. However, the gold training data contains only six shell nouns and events and thus resolution of anaphors in the ARRAU corpus that covers a variety of anaphor types benefits from the silver data. Our MR-LSTM models for resolution of abstract anaphors outperform the prior work for shell noun resolution \citep{kolhatkar_et_al_2013} in their restricted task setup. Finally, we try to get the best out of the gold and silver training data by mixing them. Moreover, we speculate that we could improve the training on a mixture if we: (i) handle artifacts in the silver data with adversarial training and (ii) use multi-task learning to enable our models to make ranking decisions dependent on the type of anaphor. These proposals give us mixed results and hence a robust mixed training strategy remains a challenge

    Abstract Anaphora Resolution [Source Code]

    No full text
    Abstract Anaphora Resolution (AAR) aims to find the interpretation of nominal expressions (e.g., this result, those two actions) and pronominal expressions (e.g., this, that, it) that refer to abstract-object-antecedents such as facts, events, plans, actions, or situations. The folder Silver Data contains the code for processing the silver training data described in Marasović et al. (2017). For more information read Silver Data/README. The folder Gold Data contains the code for processing the gold training and evaluation data. Use Gold Data/process_aar_data.py to prepare the ASN corpus (Kolhatkar et al, 2013) and the CoNLL-12 shared task data (Jauhar et al, 2015). Read arrau_csn/instructions_arrau_construction.txt for processing of the ARRAU corpus (Poesio et al, 2018). The implementation for training and evaluating models presented in Marasović et al. (2017) maybe be found in the folder EMNLP 2017. The readme contains the information on how to run the training and evaluation scripts. The implementation for training and evaluating models presented in the thesis may be found in the Thesis folder. <p

    SRL4ORL: Improving Opinion Role Labeling Using Multi-Task Learning With Semantic Role Labeling [Source Code]

    No full text
    This repository contains code for reproducing experiments done in Marasovic and Frank (2018). Paper abstract: For over a decade, machine learning has been used to extract opinion-holder-target structures from text to answer the question "Who expressed what kind of sentiment towards what?". Recent neural approaches do not outperform the state-of-the-art feature-based models for Opinion Role Labeling (ORL). We suspect this is due to the scarcity of labeled training data and address this issue using different multi-task learning (MTL) techniques with a related task which has substantially more data, i.e. Semantic Role Labeling (SRL). We show that two MTL models improve significantly over the single-task model for labeling of both holders and targets, on the development and the test sets. We found that the vanilla MTL model, which makes predictions using only shared ORL and SRL features, performs the best. With deeper analysis, we determine what works and what might be done to make further improvements for ORL. Data for ORL Download MPQA 2.0 corpus. Check mpqa2-pytools for example usage. Splits can be found in the datasplit folder. Data for SRL The data is provided by: CoNLL-2005 Shared Task, but the original words are from the Penn Treebank dataset, which is not publicly available. How to train models? python main.py --adv_coef 0.0 --model fs --exp_setup_id new --n_layers_orl 0 --begin_fold 0 --end_fold 4 python main.py --adv_coef 0.0 --model html --exp_setup_id new --n_layers_orl 1 --n_layers_shared 2 --begin_fold 0 --end_fold 4 python main.py --adv_coef 0.0 --model sp --exp_setup_id new --n_layers_orl 3 --begin_fold 0 --end_fold 4 python main.py --adv_coef 0.1 --model asp --exp_setup_id prior --n_layers_orl 3 --begin_fold 0 --end_fold 10<p

    Multilingual Modal Sense Classification using a Convolutional Neural Network

    No full text
    Modal sense classification (MSC) is a special WSD task that depends on the meaning of the proposition in the modal's scope. We explore a CNN architecture for classifying modal sense in English and German. We show that CNNs are superior to manually designed feature-based classifiers and a standard NN classifier. We analyze the feature maps learned by the CNN and identify known and previously unattested linguistic features. We benchmark the CNN on a standard WSD task, where it compares favorably to models using sense-disambiguated target vectors

    Modal Sense Classification At Large: Paraphrase-Driven Sense Projection, Semantically Enriched Classification Models and Cross-Genre Evaluations

    No full text
    Modal verbs have different interpretations depending on their context. Their sense categories – epistemic, deontic and dynamic – provide important dimensions of meaning for the interpretation of discourse. Previous work on modal sense classification achieved relatively high performance using shallow lexical and syntactic features drawn from small-size annotated corpora. Due to the restricted empirical basis, it is difficult to assess the particular difficulties of modal sense classification and the generalization capacity of the proposed models. In this work we create large-scale, high-quality annotated corpora for modal sense classification using an automatic paraphrase-driven projection approach. Using the acquired corpora, we investigate the modal sense classification task from different perspectives. We uncover the difficulty of specific sense distinctions by investigating distributional bias and reducing the sparsity of existing small-scale corpora used in prior work. We build a semantically enriched model for modal sense classification by designing novel features related to lexical, proposition-level and discourse-level semantic factors. Besides improved classification performance, closer examination of interpretable feature sets unveils relevant semantic and contextual factors in modal sense classification. Finally, we investigate genre effects on modal sense distribution and how they affect classification performance. Our investigations uncover the difficulty of specific sense distinctions and how they are affected by training set size and distributional bias. Our large-scale experiments confirm that semantically enriched models outperform models built on shallow feature sets. Cross-genre experiments shed light on differences in sense distributions across genres and confirm that semantically enriched models have high generalization capacity, especially in unstable distributional settings
    corecore