23 research outputs found

    First evidence of an altered microbiota and intestinal damage and its link to absence epilepsy in a genetic animal model, the WAG/Rij rat

    Get PDF
    Objective: A large number of studies have highlighted the important role of the gut microbiota in the pathophysiology of neurological disorders, suggesting that its manipulation might serve as a treatment strategy. We hypothesized that the gut microbiota participates in absence seizure development and maintenance in the WAG/Rij rat model and tested this hypothesis by evaluating potential gut microbiota and intestinal alterations in the model, as well as measuring the impact of microbiota manipulation using fecal microbiota transplantation (FMT). Methods: Initially, gut microbiota composition and intestinal histology of WAG/Rij rats (a well-recognized genetic model of absence epilepsy) were studied at 1, 4, and 8 months of age in comparison to nonepileptic Wistar rats. Subsequently, in a second set of experiments, at 6 months of age, untreated Wistar or WAG/Rij rats treated with ethosuximide (ETH) were used as gut microbiota donors for FMT in WAG/Rij rats, and electroencephalographic (EEG) recordings were obtained over 4 weeks. At the end of FMT, stool and gut samples were collected, absence seizures were measured on EEG recordings, and microbiota analysis and histopathological examinations were performed. Results: Gut microbiota analysis showed differences in beta diversity and specific phylotypes at all ages considered and significant variances in the Bacteroidetes/Firmicutes ratio between Wistar and WAG/Rij rats. FMT, from both Wistar and ETH-treated WAG/Rij donors to WAG/Rij rats, significantly decreased the number and duration of seizures. Histological results indicated that WAG/Rij rats were characterized by intestinal villi disruption and inflammatory infiltrates already at 1 month of age, before seizure occurrence; FMT partially restored intestinal morphology while also significantly modifying gut microbiota and concomitantly reducing absence seizures. Significance: Our results demonstrate for the first time that the gut microbiota is modified and contributes to seizure occurrence in a genetic animal model of absence epilepsy and that its manipulation may be a suitable therapeutic target for absence seizure management

    Epidemiological features and specificities of HCV infection: a hospital-based cohort study in a university medical center of Calabria region

    Get PDF
    <p>Abstract</p> <p>The epidemiological status of HCV in Europe, and in particular in Mediterranean countries, is continuously evolving. The genotype distribution is related to improvement of healthcare conditions, expansion of intravenous drug use and immigration. We review and characterize the epidemiology of the distribution of HCV genotypes within Calabria, an area of Southern Italy. We focus on the pattern of distinct HCV genotype changes over the last 16 years; particularly subtype 1b and genotype 4. We collected data by evaluating a hospital-based cohort of chronic hepatitis C patients; in addition, we report an update including new patients enrolled during last eight months.</p

    First evidence of altered microbiota and intestinal damage and their link to absence epilepsy in a genetic animal model, the WAG/Rij rat

    No full text
    Objective: A large number of studies have highlighted the important role of the gut microbiota in the pathophysiology of neurological disorders, suggesting that its manipulation might serve as a treatment strategy. We hypothesized that the gut microbiota participates in absence seizure development and maintenance in the WAG/Rij rat model and tested this hypothesis by evaluating potential gut microbiota and intestinal alterations in the model, as well as measuring the impact of microbiota manipulation using fecal microbiota transplantation (FMT). Methods: Initially, gut microbiota composition and intestinal histology of WAG/Rij rats (a well-recognized genetic model of absence epilepsy) were studied at 1, 4, and 8 months of age in comparison to nonepileptic Wistar rats. Subsequently, in a second set of experiments, at 6 months of age, untreated Wistar or WAG/Rij rats treated with ethosuximide (ETH) were used as gut microbiota donors for FMT in WAG/Rij rats, and electroencephalographic (EEG) recordings were obtained over 4 weeks. At the end of FMT, stool and gut samples were collected, absence seizures were measured on EEG recordings, and microbiota analysis and histopathological examinations were performed. Results: Gut microbiota analysis showed differences in beta diversity and specific phylotypes at all ages considered and significant variances in the Bacteroidetes/Firmicutes ratio between Wistar and WAG/Rij rats. FMT, from both Wistar and ETH-treated WAG/Rij donors to WAG/Rij rats, significantly decreased the number and duration of seizures. Histological results indicated that WAG/Rij rats were characterized by intestinal villi disruption and inflammatory infiltrates already at 1 month of age, before seizure occurrence; FMT partially restored intestinal morphology while also significantly modifying gut microbiota and concomitantly reducing absence seizures. Significance: Our results demonstrate for the first time that the gut microbiota is modified and contributes to seizure occurrence in a genetic animal model of absence epilepsy and that its manipulation may be a suitable therapeutic target for absence seizure management

    Future research and collaboration: the "SINERGIE" project on HCV (South Italian Network for Rational Guidelines and International Epidemiology).

    No full text
    The SINERGIE (South Italian Network for Rational Guidelines and International Epidemiology) project is intended to set up a collaborative network comprising virologists, clinicians and public health officials dealing with patients affected by HCV disease in the Calabria Region. A prospective observational data-base of HCV infection will be developed and used for studies on HCV natural history, response to treatment, pharmaco-economics, disease complications, and HCV epidemiology (including phylogenetic analysis). With this approach, we aim at improving the identification and care of patients, focusing on upcoming research questions. The final objective is to assist in improving care delivery and inform Public Health Authorities on how to optimize resource allocation in this area

    Future research and collaboration: the “SINERGIE” project on HCV (South Italian Network for Rational Guidelines and International Epidemiology)

    Get PDF
    The SINERGIE (South Italian Network for Rational Guidelines and International Epidemiology) project is intended to set up a collaborative network comprising virologists, clinicians and public health officials dealing with patients affected by HCV disease in the Calabria Region. A prospective observational data-base of HCV infection will be developed and used for studies on HCV natural history, response to treatment, pharmaco-economics, disease complications, and HCV epidemiology (including phylogenetic analysis). With this approach, we aim at improving the identification and care of patients, focusing on upcoming research questions. The final objective is to assist in improving care delivery and inform Public Health Authorities on how to optimize resource allocation in this area
    corecore