241 research outputs found
Editorial: Vaginal dysbiosis and biofilms
Not availabl
Whole Genome Sequencing of a Chlamydia trachomatis Strain Responsible for a Case of Rectal Lymphogranuloma Venereum in Italy
Lymphogranuloma venereum (LGV) is a systemic sexually transmitted infection caused by Chlamydia trachomatis serovars L1 to L3. The current LGV cases in Europe are mainly characterized by an anorectal syndrome, spreading within men who have sex with men (MSM). Whole-genome sequencing of LGV strains is crucial to the study of bacterial genomic variants and to improve strategies for contact tracing and prevention. In this study, we described the whole genome of a C. trachomatis strain (LGV/17) responsible for a case of rectal LGV. LGV/17 strain was isolated in 2017 in Bologna (North of Italy) from a HIV-positive MSM, presenting a symptomatic proctitis. After the propagation in LLC-MK2 cells, the strain underwent whole-genome sequencing by means of two platforms. Sequence type was determined using the tool MLST 2.0, whereas the genovariant was characterized by an ompA sequence evaluation. A phylogenetic tree was generated by comparing the LGV/17 sequence with a series of L2 genomes, downloaded from the NCBI website. LGV/17 belonged to sequence type ST44 and to the genovariant L2f. Nine ORFs encoding for polymorphic membrane proteins A-I and eight encoding for glycoproteins Pgp1-8 were detected in the chromosome and in the plasmid, respectively. LGV/17 was closely related to other L2f strains, even in the light of a not-negligible variability. The LGV/17 strain showed a genomic structure similar to reference sequences and was phylogenetically related to isolates from disparate parts of the world, indicative of the long-distance dynamics of transmission
Congenital Syphilis Like Many Years Ago
This case concerns a premature infant with typical signs of congenital syphilis born to an untreated foreign mother.
Syphilis prevalence in pregnant women has been rising in Italy since the beginning of the 21st century, mainly due to immigration.
A correct antenatal syphilis screening and consequent adequate therapy of pregnant woman are fundamental to prevent the neonatal infection
Prebiotic Activity of Vaginal Lactobacilli on Bifidobacteria: from Concept to Formulation
The gut of babies born vaginally is rapidly colonized by Bifidobacterium spp. after birth, while in infants born by cesarean section (C-section), the presence of bifidobacteria drops dramatically, increasing the risk of developing gastrointestinal disorders. Considering that newborns naturally come into contact with maternal lactobacilli as they pass through the birth canal, the aim of this work is to exploit for the first time the bifidogenic activity exerted by the cell-free supernatants (CFSs) from lactobacilli of vaginal origin, belonging to the species Lactobacillus crispatus, Lactobacillus gasseri, Limosilactobacillus vaginalis, and Lactiplantibacillus plantarum. CFSs were recovered after 7 h, 13 h, and 24 h of fermentation and assessed for the ability to stimulate the planktonic growth and biofilms of Bifidobacterium strains belonging to species widely represented in the gut tract. A bifidogenic effect was observed for all CFSs; such activity was maximal for CFSs recovered in exponential phase and was strongly dependent on the species of lactobacilli. Importantly, no stimulating effects on an intestinal Escherichia coli strain were observed. CFSs from L. vaginalis BC17 showed the best bifidogenic profile since they increased bifidobacterial planktonic growth by up to 432% and biofilm formation by up to 289%. The CFS at 7 h from BC17 was successfully formulated with a hyaluronic acid-based hydrogel aimed at preventing and treating breast sores in lactating women and exerting bifidogenic activity in infants born mainly by C-section. IMPORTANCE Bifidobacteria in the gut tract of infants play crucial roles in the prevention of gastrointestinal diseases and the maturation of the immune system. Consequently, strategies to trigger a bifidogenic shift in the infant gut are highly desirable. Evidences suggest that the presence of a maternal vaginal microbiota dominated by health-promoting lactobacilli and the development of a bifidobacterium-enriched gut microbiota in newborns are interconnected. In this context, we found out that the cell-free supernatants from lactobacilli of vaginal origin were able to effectively stimulate the proliferation of Bifidobacterium spp. grown in free-floating and biofilm forms. The cell-free supernatant from Limosilactobacillus vaginalis BC17 showed excellent bifidogenic behavior, which was preserved even after its incorporation into a nipple formulation for lactating women. Lactobacilli derivatives, such as cell-free supernatants, have gained increasing interest by virtue of their safer profile than that of living cells and can be proposed as an ecosustainable approach to favor gut colonization of infants by bifidobacteria
New Insights into Vaginal Environment During Pregnancy
During pregnancy, the vaginal ecosystem undergoes marked changes, including a significant enrichment with Lactobacillus spp. and profound alterations in metabolic profiles. A deep comprehension of the vaginal environment may shed light on the physiology of pregnancy and may provide novel biomarkers to identify subjects at risk of complications (e.g., miscarriage, preterm birth). In this study, we characterized the vaginal ecosystem in Caucasian women with a normal pregnancy (n = 64) at three different gestational ages (i.e., first, second and third trimester) and in subjects (n = 10) suffering a spontaneous first trimester miscarriage. We assessed the vaginal bacterial composition (Nugent score), the vaginal metabolic profiles (H-1-NMR spectroscopy) and the vaginal levels of two cytokines (IL-6 and IL-8). Throughout pregnancy, the vaginal microbiota became less diverse, being mainly dominated by lactobacilli. This shift was clearly associated with marked changes in the vaginal metabolome: over the weeks, a progressive reduction in the levels of dysbiosis-associated metabolites (e.g., biogenic amines, alcohols, propionate, acetate) was observed. At the same time, several metabolites, typically found in healthy vaginal conditions, reached the highest concentrations at the end of pregnancy (e.g., lactate, glycine, phenylalanine, leucine, isoleucine). Lower levels of glucose were an additional fingerprint of a normal vaginal environment. The vaginal levels of IL-6 and IL-8 were significantly associated with the number of vaginal leukocytes, as well as with the presence of vaginal symptoms, but not with a condition of dysbiosis. Moreover, IL-8 concentration seemed to be a good predictor of the presence of vaginal Candida spp. Cytokine concentrations were negatively correlated to lactate, serine, and glycine concentrations, whereas the levels of 4-hydroxyphenyllactate, glucose, O-acetylcholine, and choline were positively correlated with Candida vaginal loads. Finally, we found that most cases of spontaneous abortion were associated with an abnormal vaginal microbiome, with higher levels of selected metabolites in the vaginal environment (e.g., inosine, fumarate, xanthine, benzoate, ascorbate). No association with higher pro-inflammatory cytokines was found. In conclusion, our analysis provides new insights into the pathophysiology of pregnancy and highlights potential biomarkers to enable the diagnosis of early pregnancy loss
Prevalence and predictors of Lymphogranuloma venereum in a high risk population attending a STD outpatients clinic in Italy
We evaluated LGV prevalence and predictors in a high risk population attending a STI Outpatients Clinic in the North of Italy. METHODS: A total of 108 patients (99 MSM and 9 women), with a history of unsafe anal sexual intercourses, were enrolled. Anorectal swabs and urine samples were tested for Chlamydia trachomatis (CT) DNA detection by Versant CT/GC DNA 1.0 Assay (Siemens Healthcare Diagnostics Terrytown, USA). RFLP analysis was used for CT molecular typing. RESULTS: L2 CT genotype was identified in 13/108 (12%) rectal swabs. All LGV cases were from MSM, declaring high-risk sexual behaviour and complaining anorectal symptoms. Patients first attending the STI Outpatient Clinic received a significant earlier LGV diagnosis than those first seeking care from general practitioners or gastroenterologists (P\u2009=\u20090.0046). LGV prevalence and characteristics found in our population are in agreement with international reports. Statistical analysis showed that LGV positive patients were older (P\u2009=\u20090.0008) and presented more STIs (P\u2009=\u20090.0023) than LGV negative ones, in particular due to syphilis (P\u2009<\u20090.001), HIV (P\u2009<\u20090.001) and HBV (P\u2009=\u20090.001).Multivariate logistic regression analysis revealed that HIV and syphilis infections are strong risk factors for LGV presence (respectively, P\u2009=\u20090.001 and P\u2009=\u20090.010). CONCLUSIONS: Even if our results do not provide sufficient evidence to recommend routine screening of anorectal swabs in high-risk population, they strongly suggest to perform CT NAAT tests and genotyping on rectal specimens in presence of ulcerative proctitis in HIV and/or syphilis-positive MSM. In this context, CT DNA detection by Versant CT/GC DNA 1.0 Assay, followed by RFLP analysis for molecular typing demonstrated to be an excellent diagnostic algorithm for LGV identification
Chlamydia trachomatis and Neisseria gonorrhoeae rectal infections: Interplay between rectal microbiome, HPV infection and Torquetenovirus
Men having sex with men (MSM) represent a key population, in which sexually transmitted rectal infections (STIs) caused by Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG) and high-risk HPV (HR-HPV) are very common and linked to significant morbidity. Investigating the anorectal microbiome associated with rectal STIs holds potential for deeper insights into the pathogenesis of these infections and the development of innovative control strategies. In this study, we explored the interplay at the rectal site between C. trachomatis, N. gonorrhoeae, HR-HPV infection, and the anorectal microbiome in a cohort of 92 MSM (47 infected by CT and/or NG vs 45 controls). Moreover, we assessed the presence of Torquetenovirus (TTV), a non-pathogenic endogenous virus, considered as a possible predictor of immune system activation. We found a high prevalence of HR-HPV rectal infections (61%), especially in subjects with a concurrent CT/NG rectal infection (70.2%) and in people living with HIV (84%). In addition, we observed that TTV was more prevalent in subjects with CT/NG rectal infections than in non-infected ones (70.2% vs 46.7%, respectively). The anorectal microbiome of patients infected by CT and/or NG exhibited a reduction in Escherichia, while the presence of TTV was significantly associated with higher levels of Bacteroides. We observed a positive correlation of HR-HPV types with Escherichia and Corynebacterium, and a negative correlation with the Firmicutes phylum, and with Prevotella, Oscillospira, Sutterella. Our findings shed light on some of the dynamics occurring within the rectal environment involving chlamydial/gonococcal infections, HPV, TTV, and the anorectal microbiome. These data could open new perspectives for the control and prevention of STIs in MSM
Role of D(-)-Lactic Acid in Prevention of Chlamydia trachomatis Infection in an In Vitro Model of HeLa Cells
A vaginal microbiota dominated by certain Lactobacillus species may have a protective effect against Chlamydia trachomatis infection. One of the key antimicrobial compounds produced is lactic acid, which is believed to play a central role in host defense. Lactobacillus strains producing the D(-)-lactic acid isomer are known to exert stronger protection. However, the molecular mechanisms underlying this antimicrobial action are not well understood. The aim of this study was to investigate the role of D(-)-lactic acid isomer in the prevention of C. trachomatis infection in an in vitro HeLa cell model. We selected two strains of lactobacilli belonging to different species: a vaginal isolate of Lactobacillus crispatus that releases both D(-) and L(+) isomers and a strain of Lactobacillus reuteri that produces only the L(+) isomer. Initially, we demonstrated that L. crispatus was significantly more effective than L. reuteri in reducing C. trachomatis infectivity. A different pattern of histone acetylation and lactylation was observed when HeLa cells were pretreated for 24 h with supernatants of Lactobacillus crispatus or L. reuteri, resulting in different transcription of genes such as CCND1, CDKN1A, ITAG5 and HER-1. Similarly, distinct transcription patterns were found in HeLa cells treated with 10 mM D(-)- or L(+)-lactic acid isomers. Our findings suggest that D(-) lactic acid significantly affects two non-exclusive mechanisms involved in C. trachomatis infection: regulation of the cell cycle and expression of EGFR and α5β1-integrin
A Deep Look at the Vaginal Environment During Pregnancy and Puerperium
A deep comprehension of the vaginal ecosystem may hold promise for unraveling the pathophysiology of pregnancy and may provide novel biomarkers to identify subjects at risk of maternal-fetal complications. In this prospective study, we assessed the characteristics of the vaginal environment in a cohort of pregnant women throughout their different gestational ages and puerperium. Both the vaginal bacterial composition and the vaginal metabolic profiles were analyzed. A total of 63 Caucasian women with a successful pregnancy and 9 subjects who had a first trimester miscarriage were enrolled. For the study, obstetric examinations were scheduled along the three trimester phases (9-13, 20-24, 32-34 gestation weeks) and puerperium (40-55 days after delivery). Two vaginal swabs were collected at each time point, to assess the vaginal microbiome profiling (by Nugent score and 16S rRNA gene sequencing) and the vaginal metabolic composition (1H-NMR spectroscopy). During pregnancy, the vaginal microbiome underwent marked changes, with a significant decrease in overall diversity, and increased stability. Over time, we found a significant increase of Lactobacillus and a decrease of several genera related to bacterial vaginosis (BV), such as Prevotella, Atopobium and Sneathia. It is worth noting that the levels of Bifidobacterium spp. tended to decrease at the end of pregnancy. At the puerperium, a significantly lower content of Lactobacillus and higher levels of Gardnerella, Prevotella, Atopobium, and Streptococcus were observed. Women receiving an intrapartum antibiotic prophylaxis for Group B Streptococcus (GBS) were characterized by a vaginal abundance of Prevotella compared to untreated women. Analysis of bacterial relative abundances highlighted an increased abundance of Fusobacterium in women suffering a first trimester abortion, at all taxonomic levels. Lactobacillus abundance was strongly correlated with higher levels of lactate, sarcosine, and many amino acids (i.e., isoleucine, leucine, phenylalanine, valine, threonine, tryptophan). Conversely, BV-associated genera, such as Gardnerella, Atopobium, and Sneathia, were related to amines (e.g., putrescine, methylamine), formate, acetate, alcohols, and short-chain fatty-acids (i.e., butyrate, propionate)
Pre-Pregnancy Diet and Vaginal Environment in Caucasian Pregnant Women: An Exploratory Study
Vaginal microbes and their metabolic products have crucial functions, affecting local immunity development and maternal-fetal health. The composition of the vaginal microbiome can vary in response to various factors, including body mass index (BMI), and diet. In this study we get new insights into the vaginal ecosystem of Caucasian women (n = 24) at the first trimester of pregnancy, assessing whether pre-pregnancy diet can affect the structure of the vaginal environment in terms of bacterial composition and vaginal metabolite concentration. We characterized 1) the vaginal bacterial composition (Nugent score), 2) the vaginal metabolic profiles (1H-NMR spectroscopy), and 3) the dietary nutrient intake by means of a validated food frequency questionnaire. Pre-pregnancy BMI was negatively related to vaginal health status, indicating that women who begin pregnancy overweight/obese have a greater occurrence of vaginal dysbiosis during pregnancy. A lactobacilli-dominated vaginal microbiota was negatively associated with higher pre-pregnancy intake of animal-sourced protein. Conversely, a higher pre-pregnancy consumption of total carbohydrates and sugars seemed to be a protective factor for vaginal health. The vaginal environment of BV-women was characterized by higher levels of biogenic amines and organic acids, whereas higher levels of phenylpropionate and diverse amino acids were fingerprints of a healthy vaginal status. A significant association between a higher pre-pregnancy BMI and several dysbiosis-related vaginal metabolites was also found. Our study shed light on the role of pre-pregnancy BMI and diet on the vaginal environment during pregnancy, underlining the importance of limiting protein intake from animal foods to maintain a healthy lactobacilli-dominated microbiota
- …