29 research outputs found

    Nox4 is critical for hypoxia-inducible factor 2-alpha transcriptional activity in von Hippel-Lindau-deficient renal cell carcinoma

    Get PDF
    Inactivation of the von Hippel-Lindau tumor suppressor (VHL) is an early event in \u3e60% of sporadic clear cell renal cell carcinoma (RCC). Loss of VHL E3 ubiquitin ligase function results in accumulation of the alpha-subunit of the hypoxia-inducible heterodimeric transcription factor (HIF-alpha) and transcription of an array of genes including vascular endothelial growth factor, transforming growth factor-alpha, and erythropoietin. Studies have shown that HIF-alpha can be alternatively activated by reactive oxygen species. Nox4 is an NADP(H) oxidase that generates signaling levels of superoxide and is found in greatest abundance in the distal renal tubules. To determine if Nox4 contributes to HIF activity in RCC, we examined the impact of Nox4 expression on HIF-alpha expression and transactivation. We report here that small inhibitory RNA (siRNA) knockdown of Nox4 in 786-0 human renal tumor cells expressing empty vector (PRC) or wild-type VHL (WT) results in 50% decrease in intracellular reactive oxygen species as measured by a fluorescent 2\u27,7\u27-dichlorofluorescin diacetate assay, and \u3e85% reduction in HIF2-alpha mRNA and protein levels by quantitative reverse transcription-PCR and Western blot analysis. Furthermore, expression of the HIF target genes, vascular endothelial growth factor, transforming growth factor-alpha, and Glut-1 was abrogated by 93%, 74%, and 99%, respectively, after stable transfection with Nox4 siRNA relative to nontargeting siRNA, as determined by quantitative reverse transcription-PCR. Thus, renal Nox4 expression is essential for full HIF2-alpha expression and activity in 786-0 renal tumor cells, even in the absence of functional VHL. We propose the use of Nox4 as a target in the treatment of clear cell RCC

    UPDATE ON VACCINE DEVELOPMENT FOR RENAL CELL CANCER.

    Get PDF
    Renal cell carcinoma (RCC) remains a significant health concern that frequently presents as metastatic disease at the time of initial diagnosis. Current first-line therapeutics in the advanced stage setting include anti-angiogenic drugs that have yielded high rates of objective clinical response, however these tend to be transient in nature, with many patients becoming refractory to chronic treatment with these agents. Adjuvant immunotherapies remain viable candidates to sustain disease-free and overall patient survival. In particular, vaccines designed to optimize the activation, maintenance and recruitment of specific immunity within/into the tumor site continue to evolve. Based on the integration of increasingly refined immunomonitoring systems in both translational models and clinical trials, allowing for the improved understanding of treatment mechanism(s) of action, further refined (combinational) vaccine protocols are currently being developed and evaluated. This review will provide a brief history of RCC vaccine development, discussing the successes and deficiencies in such approaches, before providing a rationale for developing combinational vaccine approaches that may provide improved clinical benefits to patients with RCC

    Chloroquine-Inducible Par-4 Secretion Is Essential for Tumor Cell Apoptosis and Inhibition of Metastasis

    Get PDF
    The induction of tumor suppressor proteins capable of cancer cell apoptosis represents an attractive option for the re-purposing of existing drugs. We report that the anti-malarial drug, chloroquine (CQ), is a robust inducer of Par-4 secretion from normal cells in mice and cancer patients in a clinical trial. CQ-inducible Par-4 secretion triggers paracrine apoptosis of cancer cells and also inhibits metastatic tumor growth. CQ induces Par-4 secretion via the classical secretory pathway that requires the activation of p53. Mechanistically, p53 directly induces Rab8b, a GTPase essential for vesicle transport of Par-4 to the plasma membrane prior to secretion. Our findings indicate that CQ induces p53- and Rab8b-dependent Par-4 secretion from normal cells for Par-4-dependent inhibition of metastatic tumor growth

    Genomic investigation of etiologic heterogeneity: methodologic challenges

    Get PDF
    Background: The etiologic heterogeneity of cancer has traditionally been investigated by comparing risk factor frequencies within candidate sub-types, defined for example by histology or by distinct tumor markers of interest. Increasingly tumors are being profiled for molecular features much more extensively. This greatly expands the opportunities for defining distinct sub-types. In this article we describe an exploratory analysis of the etiologic heterogeneity of clear cell kidney cancer. Data are available on the primary known risk factors for kidney cancer, while the tumors are characterized on a genome-wide basis using expression, methylation, copy number and mutational profiles. Methods: We use a novel clustering strategy to identify sub-types. This is accomplished independently for the expression, methylation and copy number profiles. The goals are to identify tumor sub-types that are etiologically distinct, to identify the risk factors that define specific sub-types, and to endeavor to characterize the key genes that appear to represent the principal features of the distinct sub-types. Results: The analysis reveals strong evidence that gender represents an important factor that distinguishes disease sub-types. The sub-types defined using expression data and methylation data demonstrate considerable congruence and are also clearly correlated with mutations in important cancer genes. These sub-types are also strongly correlated with survival. The complexity of the data presents many analytical challenges including, prominently, the risk of false discovery. Conclusions: Genomic profiling of tumors offers the opportunity to identify etiologically distinct sub-types, paving the way for a more refined understanding of cancer etiology. Electronic supplementary material The online version of this article (doi:10.1186/1471-2288-14-138) contains supplementary material, which is available to authorized users

    ClearCode34: A Prognostic Risk Predictor for Localized Clear Cell Renal Cell Carcinoma

    Get PDF
    Gene expression signatures have proven to be useful tools in many cancers to identify distinct subtypes of disease based on molecular features that drive pathogenesis, and to aid in predicting clinical outcomes. However, there are no current signatures for kidney cancer that are applicable in a clinical setting

    Hsa-miRNA-765 as a key mediator for inhibiting growth, migration and invasion in fulvestrant-treated prostate cancer

    Get PDF
    Fulvestrant (ICI-182,780) has recently been shown to effectively suppress prostate cancer cell growth in vitro and in vivo. But it is unclear whether microRNAs play a role in regulating oncogene expression in fulvestrant-treated prostate cancer. Here, this study reports hsa-miR-765 as the first fulvestrant-driven, ERβ-regulated miRNA exhibiting significant tumor suppressor activities like fulvestrant, against prostate cancer cell growth via blockage of cell-cycle progression at the G2/M transition, and cell migration and invasion possibly via reduction of filopodia/intense stress-fiber formation. Fulvestrant was shown to upregulate hsa-miR-765 expression through recruitment of ERβ to the 5′-regulatory-region of hsa-miR-765. HMGA1, an oncogenic protein in prostate cancer, was identified as a downstream target of hsa-miR-765 and fulvestrant in cell-based experiments and a clinical study. Both the antiestrogen and the hsa-miR-765 mimic suppressed HMGA1 protein expression. In a neo-adjuvant study, levels of hsa-miR-765 were increased and HMGA1 expression was almost completely lost in prostate cancer specimens from patients treated with a single dose (250 mg) of fulvestrant 28 days before prostatectomy. These findings reveal a novel fulvestrant signaling cascade involving ERβ-mediated transcriptional upregulation of hsa-miR-765 that suppresses HMGA1 protein expression as part of the mechanism underlying the tumor suppressor action of fulvestrant in prostate cancer. © 2014 Leung et al

    The Role of Interferon in the Management of BCG Refractory Nonmuscle Invasive Bladder Cancer

    No full text
    Background. Thirty to forty percent of patients with high grade nonmuscle invasive bladder cancer (NMIBC) fail to respond to intravesical therapy with bacillus Calmette-Guerin (BCG). Interferon-α2B plus BCG has been shown to be effective in a subset of patients with NMIBC BCG refractory disease. Here we present a contemporary series on the effectiveness and safety of intravesical BCG plus interferon-α2B therapy in patients with BCG refractory NMIBC. Methods. From January of 2005 to April of 2014 we retrospectively found 44 patients who underwent induction with combination IFN/BCG for the management of BCG refractory NMIBC. A chart review was performed to assess initial pathological stage/grade, pathological stage/grade at the time of induction, time to IFN/BCG failure, pathological stage/grade at failure, postfailure therapy, and current disease state. Results. Of the 44 patients who met criteria for the analysis. High risk disease was found in 88.6% of patients at induction. The 12-month and 24-month recurrence-free survival were 38.6% and 18.2%, respectively. 25 (56.8%) ultimately had disease recurrence. Radical cystectomy was performed in 16 (36.4%) patients. Conclusion. Combination BCG plus interferon-α2B remains a reasonably safe alternative treatment for select patients with BCG refractory disease prior to proceeding to radical cystectomy
    corecore