11 research outputs found

    The Fate of the Tumor in the Hands of Microenvironment: Role of TAMs and mTOR Pathway

    No full text
    Since 2000, written with elegance and accuracy, Hanahan and Weinberg have proposed six major hallmarks of cancer and, together, they provide great advances to the understanding of tumoral biology. Our knowledge about tumor behavior has improved and the investigators have now recognized that inflammatory microenvironment may be a new feature for the tumor entities. Macrophages are considered as an important component of tumoral microenvironment. Biologically, two forms of activated macrophages can be observed: classically activated macrophages (M1) and alternative activated macrophages (M2). Despite the canonical pathways that control this puzzle of macrophages polarization, recently, mTOR signaling pathway has been implicated as an important piece in determining the metabolic and functional differentiation of M1 and M2 profiles. Currently, it is believed that macrophages related to tumoral microenvironment present an “M2-like” feature promoting an immunosuppressive microenvironment enhancing tumoral angiogenesis, growth, and metastasis. In the present review we discuss the role of macrophages in the tumor microenvironment and the role of mTOR pathway in M1 and M2 differentiation. We also discuss the recent findings in M1 and M2 polarization as a possible target in the cancer therapy

    Advax4 delta inulin combination adjuvant together with ECMX, a fusion construct of four protective mTB antigens, induces a potent Th1 immune response and protects mice against Mycobacterium tuberculosis infection

    No full text
    Tuberculosis (TB) remains a main public health concern and 10.4 million new cases occurred in 2015 around the world. BCG is the only approved vaccine against TB, but has variable efficacy and new vaccines are needed. We developed two new mTB vaccine candidates based on the recombinant fusion proteins, rCMX and rECMX formulated with Advax4, a new combination adjuvant combining delta inulin, CpG oligonucleotide and murabutide. BALB/c mice were immunized three times intramuscularly with these vaccine formulations. Injection of Advax4 alone increased the percentage of lymphatic endothelial cells and activated macrophages (F480/CD11b+) in the draining lymph nodes consistent with a chemotactic adjuvant effect. Advax4+CMX and Advax4+ECMX induced the highest levels of IgG1 and IgG2a antibodies against rCMX and rECMX, respectively. Immunized mice challenged with Mycobacterium tuberculosis (Mtb) had increased vaccine-specific Th1 responses in the lungs together with reduced Mtb – associated alveolar damage, although only the Advax4+ECMX vaccine demonstrated significant reduction of lung bacterial load. This study confirmed Advax4+ECMX as a potential TB vaccine candidate, with potential for further optimization and clinical development

    Polyphenols-Rich Fraction from <em>Annona muricata</em> Linn. Leaves Attenuates Oxidative and Inflammatory Responses in Neutrophils, Macrophages, and Experimental Lung Injury

    No full text
    Annona muricata Linn. is a common plant found in the warmest regions of South and Central America and its use in traditional medicine has been reported for the treatment of various illnesses. In the current study, we investigate the antioxidant and anti-inflammatory activities of crude extract and fractions from A. muricata L. leaves in isolated murine phagocytic immune cells as well as experimental LPS-induced acute lung injury (ALI). In a luminol-dependent chemiluminescence assay, we showed that ethyl acetate (EtOAc.f) and n-butanol (BuOH.f) fractions—both rich in polyphenols—reduced the generation of reactive oxygen species (ROS) by neutrophils stimulated with opsonized zymosan; similar results were found in culture of bone marrow-derived macrophages (BMDMs). By evaluating anti-inflammatory activity in BMDMs, EtOAc.f and BuOH.f reduced secretion of IL-6 and expression of the co-stimulatory molecule CD40. Furthermore, in LPS-induced ALI, oral administration of EtOAc.f reduced myeloperoxidase (MPO) activity in lung tissue. In addition, on a mechanism dependent on glutathione levels, the oxidative damage was also attenuated. These findings revealed direct antioxidant and anti-inflammatory activities of polyphenols-rich fractions of A. muricata L. leaves on neutrophils and macrophages. Moreover, the reduced oxidative damage and levels of inflammatory markers in experimental ALI suggest that these fractions might be explored for the development of new therapies for inflammatory conditions

    Neonatal sepsis and inflammatory mediators

    No full text
    Submitted by Jaqueline Silva ([email protected]) on 2019-01-23T16:14:10Z No. of bitstreams: 2 Artigo - Juliana Reis Machado - 2014.pdf: 1328366 bytes, checksum: ed7d2deca251f3f4502f8eb612322207 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira ([email protected]) on 2019-01-24T11:16:06Z (GMT) No. of bitstreams: 2 Artigo - Juliana Reis Machado - 2014.pdf: 1328366 bytes, checksum: ed7d2deca251f3f4502f8eb612322207 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2019-01-24T11:16:06Z (GMT). No. of bitstreams: 2 Artigo - Juliana Reis Machado - 2014.pdf: 1328366 bytes, checksum: ed7d2deca251f3f4502f8eb612322207 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2014-12-30Neonatal sepsis is a major cause of morbidity and mortality and its signs and symptoms are nonspecific, which makes the diagnosis difficult. The routinely used laboratory tests are not effective methods of analysis, as they are extremely nonspecific and often cause inappropriate use of antibiotics. Sepsis is the result of an infection associated with a systemic inflammatory response with production and release of a wide range of inflammatory mediators. Cytokines are potent inflammatory mediators and their serum levels are increased during infections, so changes from other inflammatory effector molecules may occur. Although proinflammatory and anti-inflammatory cytokines have been identified as probable markers of neonatal infection, in order to characterize the inflammatory response during sepsis, it is necessary to analyze a panel of cytokines and not only the measurement of individual cytokines. Measurements of inflammatory mediators bring new options for diagnosing and following up neonatal sepsis, thus enabling early treatment and, as a result, increased neonatal survival. By taking into account the magnitude of neonatal sepsis, the aim of this review is to address the role of cytokines in the pathogenesis of neonatal sepsis and its value as a diagnostic criterion

    The Influence of IL-11 on Cardiac Fibrosis in Experimental Models: A Systematic Review

    No full text
    Fibrosis is one of the main factors that impair the function of many organs. In the heart, fibrosis leads to contractile dysfunction and arrhythmias, which are important in the development of heart failure. Interleukin (IL)-11 is regulated in various heart diseases and has recently been reported to be an important cytokine in fibrosis in this organ. However, this topic has been little explored, and many questions persist. Thus, this systematic review aimed to report on possible IL-11 therapies evaluated in rodent model-induced cardiac fibrosis. Inclusion criteria were experimental in vivo studies that used different rodent models for cardiac fibrosis associated with IL-11 interventions, without year and language restrictions. The search in PubMed, Web of Science, and Embase databases was performed in October 2022. The risk of bias assessment of the studies was based on the guidelines of the SYRCLE tool, and data from the selected articles were also presented in a table as a narrative description. This review was based on eight studies in which five different interventions were used: recombinant human IL-11 (rhIL-11), anti-IL11 (X203), recombinant mouse IL-11 (rmIL-11), lentivirus (LV)-IL-11 + lutein, and anti-IL11RA (X209). Based on the included studies, the results were variable, with IL-11 overexpression inducing cardiac fibrosis, while inhibition protected against this process, preserving the function of this organ. Therefore, IL-11 stands out as a promising therapeutic target for cardiac fibrosis. However, further studies are needed to understand the mechanisms triggered by each treatment, as well as its safety and immunogenicity

    Disruption of calcium homeostasis in cardiomyocytes underlies cardiac structural and functional changes in severe sepsis

    Get PDF
    Submitted by Jaqueline Silva ([email protected]) on 2019-01-23T16:37:10Z No. of bitstreams: 2 Artigo - Mara Rúbia Nunes Celes - 2013.PDF: 3514413 bytes, checksum: 678a726640bb848b312dd2454117a7bb (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira ([email protected]) on 2019-01-24T11:20:55Z (GMT) No. of bitstreams: 2 Artigo - Mara Rúbia Nunes Celes - 2013.PDF: 3514413 bytes, checksum: 678a726640bb848b312dd2454117a7bb (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2019-01-24T11:20:55Z (GMT). No. of bitstreams: 2 Artigo - Mara Rúbia Nunes Celes - 2013.PDF: 3514413 bytes, checksum: 678a726640bb848b312dd2454117a7bb (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2013-07-23Sepsis, a major cause of morbidity/mortality in intensive care units worldwide, is commonly associated with cardiac dysfunction, which worsens the prognosis dramatically for patients. Although in recent years the concept of septic cardiomyopathy has evolved, the importance of myocardial structural alterations in sepsis has not been fully explored. This study offers novel and mechanistic data to clarify subcellular events that occur in the pathogenesis of septic cardiomyopathy and myocardial dysfunction in severe sepsis. Cultured neonatal mice cardiomyocytes subjected to serum obtained from mice with severe sepsis presented striking increment of [Ca2+]i and calpain-1 levels associated with decreased expression of dystrophin and disruption and derangement of F-actin filaments and cytoplasmic bleb formation. Severe sepsis induced in mice led to an increased expression of calpain-1 in cardiomyocytes. Moreover, decreased myocardial amounts of dystrophin, sarcomeric actin, and myosin heavy chain were observed in septic hearts associated with depressed cardiac contractile dysfunction and a very low survival rate. Actin and myosin from the sarcomere are first disassembled by calpain and then ubiquitinated and degraded by proteasome or sequestered inside specialized vacuoles called autophagosomes, delivered to the lysosome for degradation forming autophagolysosomes. Verapamil and dantrolene prevented the increase of calpain-1 levels and preserved dystrophin, actin, and myosin loss/reduction as well cardiac contractile dysfunction associated with strikingly improved survival rate. These abnormal parameters emerge as therapeutic targets, which modulation may provide beneficial effects on future vascular outcomes and mortality in sepsis. Further studies are needed to shed light on this mechanism, mainly regarding specific calpain inhibitors

    Upregulation of Cardiac IL-10 and Downregulation of IFN-γ in Balb/c IL-4−/− in Acute Chagasic Myocarditis due to Colombian Strain of Trypanosoma cruzi

    No full text
    Inflammatory response in Chagas disease is related to parasite and host factors. However, immune system regulation has not been fully elucidated. Thus, this study is aimed at evaluating IL-4 influence on acute phase of Trypanosoma cruzi experimental infection through dosage of cytokine levels in cardiac homogenate of infected Balb/c WT and Balb/c IL-4−/− as well as its histopathological repercussions. For such purpose, mice were divided into two groups: an infected group with 100 forms of the Colombian strain and an uninfected group. After 21 days of infection, animals were euthanized and the blood, spleen, and heart were collected. The spleen was used to culture splenic cells in 48 h. Subsequently, cytokines TNF-α, IL-12p70, IL-10, IFN-γ, and IL-17 were measured in the blood, culture supernatant, and heart apex by ELISA. The base of the heart was used for histopathological analysis. From these analysis, infected Balb/c IL-4−/− mice showed milder inflammatory infiltrate compared to Balb/c WT, but without changes in nest density and collagen deposition. IL-4 absence culminated in lower cardiac tissue IFN-γ production, although it did not affect TNF-α expression in situ. It also decreased TNF-α systemic production and increased IL-10, both systemically and in situ. In addition, IL-4 absence did not influence IL-17 expression. Splenocytes of IL-4-deficient mice produced higher amounts of IFN-γ, TNF-α, and IL-17 and lower amounts of IL-10. Thus, IL-4 absence in acute phase of experimental infection with T. cruzi Colombian strain reduces myocarditis due to lower IFN-γ production and greater IL-10 production in situ and this pattern is not influenced by splenocyte general repertoire
    corecore