4 research outputs found

    Green extracellular synthesis of silver nanoparticles by Pseudomonas alloputida, their growth and biofilm-formation inhibitory activities and synergic behavior with three classical antibiotics

    Full text link
    Bacterial resistance to antibiotics is on the rise and hinders the fight against bacterial infections, which are expected to cause millions of deaths by 2050. New antibiotics are difficult to find, so alternatives are needed. One could be metal-based drugs, such as silver nanoparticles (AgNPs). In general, chemical methods for AgNPs’ production are potentially toxic, and the physical ones expensive, while green approaches are not. In this paper, we present the green synthesis of AgNPs using two Pseudomonas alloputida B003 UAM culture broths, sampled from their exponential and stationary growth phases. AgNPs were physicochemically characterized by transmission electron microscopy (TEM), total reflection X-ray fluorescence (TXRF), infrared spectroscopy (FTIR), dynamic light scattering (DLS), and X-ray diffraction (XRD), showing differential characteristics depending on the synthesis method used. Antibacterial activity was tested in three assays, and we compared the growth and biofilm-formation inhibition of six test bacteria: Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. We also monitored nanoparticles’ synergic behavior through the growth inhibition of E. coli and S. aureus by three classical antibiotics: ampicillin, nalidixic acid, and streptomycin. The results indicate that very good AgNP activity was obtained with particularly low MICs for the three tested strains of P. aeruginosa. A good synergistic effect on streptomycin activity was observed for all the nanoparticles. For ampicillin, a synergic effect was detected only against S. aureus. ROS production was found to be related to the AgNPs’ antibacterial activit

    Nonuniversality of front fluctuations for compact colonies of nonmotile bacteria

    Full text link
    The front of a compact bacterial colony growing on a Petri dish is a paradigmatic instance of non-equilibrium f luctuations in the celebrated Eden, or Kardar-Parisi-Zhang (KPZ), universality class. While in many experiments the scaling exponents crucially differ from the expected KPZ values, the source of this disagreement has remained poorly understood. We have performed growth experiments with B. subtilis 168 and E. coli ATCC 25922 under conditions leading to compact colonies in the classically alleged Eden regime, where individual motility is suppressed. Non-KPZ scaling is indeed observed for all accessible times, KPZ asymptotics being ruled out for our experiments due to the monotonic increase of front branching with time. Simulations of an effective model suggest the occurrence of transient nonuniversal scaling due to diffusive morphological instabilities, agreeing with expectations from detailed models of the relevant biological reaction-diffusion processe

    Microalga Broths Synthesize Antibacterial and Non-Cytotoxic Silver Nanoparticles Showing Synergy with Antibiotics and Bacterial ROS Induction and Can Be Reused for Successive AgNP Batches

    Get PDF
    The era of increasing bacterial antibiotic resistance requires new approaches to fight infections. With this purpose, silver-based nanomaterials are a reality in some fields and promise new developments. We report the green synthesis of silver nanoparticles (AgNPs) using culture broths from a microalga. Broths from two media, with different compositions and pHs and sampled at two growth phases, produced eight AgNP types. Nanoparticles harvested after several synthesis periods showed differences in antibacterial activity and stability. Moreover, an evaluation of the broths for several consecutive syntheses did not find relevant kinetics or activity differences until the third round. Physicochemical characteristics of the AgNPs (core and hydrodynamic sizes, Z-potential, crystallinity, and corona composition) were determined, observing differences depending on the broths used. AgNPs showed good antibacterial activity at concentrations producing no or low cytotoxicity on cultured eukaryotic cells. All the AgNPs had high levels of synergy against Escherichia coli and Staphylococcus aureus with the classic antibiotics streptomycin and kanamycin, but with ampicillin only against S. aureus and tetracycline against E. coli. Differences in the synergy levels were also dependent on the types of AgNPs. We also found that, for some AgNPs, the killing of bacteria started before the massive accumulation of ROSThis research was funded by the Agencia Estatal de InvestigaciĂłn of the Ministerio de Ciencia e InvestigaciĂłn of Spain, grant numbers PID2022-136607NB-100 and RTI2018-096046-B-C2

    Asignación filogenética y estudio del genoma de Hö5, un nuevo microorganismo lixiviador

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 14-11-198
    corecore