3 research outputs found

    A major recombination hotspot in the XqYq pseudoautosomal region gives new insight into processing of human gene conversion events

    Full text link
    Recombination plays a fundamental role in meiosis. Non-exchange gene conversion (non-crossover, NCO) may facilitate homologue pairing, while reciprocal crossover (CO) physically connects homologues so they orientate appropriately on the meiotic spindle. In males, X–Y homologous pairing and exchange occurs within the two pseudoautosomal regions (PARs) together comprising <5% of the human sex chromosomes. Successful meiosis depends on an obligatory CO within PAR1, while the nature and role of exchange within PAR2 is unclear. Here, we describe the identification and characterization of a typical ∼1 kb wide recombination hotspot within PAR2. We find that both COs and NCOs are strongly modulated in trans by the presumed chromatin remodelling protein PRDM9, and in cis by a single nucleotide polymorphism (SNP) located at the hotspot centre that appears to influence recombination initiation and which causes biased gene conversion in SNP heterozygotes. This, the largest survey to date of human NCOs reveals for the first time substantial inter-individual variation in the NCO:CO ratio. Although the extent of biased transmission at the central marker in COs is similar across men, it is highly variable among NCO recombinants. This suggests that cis-effects are mediated not only through recombination initiation frequencies varying between haplotypes but also through subsequent processing, with the potential to significantly intensify meiotic drive of hotspot-suppressing alleles. The NCO:CO ratio and extent of transmission distortion among NCOs appear to be inter-related, suggesting the existence of two NCO pathways in humans

    Evidence for Large-Scale Gene-by-Smoking Interaction Effects on Pulmonary Function

    Full text link
    Background: Smoking is the strongest environmental risk factor for reduced pulmonary function. The genetic component of various pulmonary traits has also been demonstrated, and at least 26 loci have been reproducibly associated with either FEV1 (forced expiratory volume in 1 second) or FEV1/FVC (FEV1/forced vital capacity). Although the main effects of smoking and genetic loci are well established, the question of potential gene-by-smoking interaction effect remains unanswered. The aim of the present study was to assess, using a genetic risk score approach, whether the effect of these 26 loci on pulmonary function is influenced by smoking. Methods: We evaluated the interaction between smoking exposure, considered as either ever vs. never or pack-years, and a 26 SNPs genetic risk score in relation to FEV1 or FEV1/FVC in 50 047 participants of European ancestry from the CHARGE and SpiroMeta consortia. Results: We identified an interaction ( = −0.036, 95% confidence interval, -0.040 – -0.032, P=0.00057) between an unweighted 26 SNPs genetic risk score and smoking status (ever/never) on the FEV1/FVC ratio. In interpreting this interaction, we showed that the genetic risk of falling below the FEV1/FVC threshold used to diagnose chronic obstructive pulmonary disease is higher among ever smokers than among never smokers. Conclusions: This study highlights the benefit of using genetic risk scores for identifying interactions missed when studying individual SNPs, and shows for the first time that persons with the highest genetic risk for low FEV1/FVC may be more susceptible to the deleterious effects of smoking

    Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis

    Full text link
    Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide1. We performed a genetic association in 15,256 cases and 47,936 controls, with replication of select top results (P < 5x10-6) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we identified 22 loci at genome-wide significance, including 13 new associations with COPD. Nine of these 13 loci have been associated with lung function in general population samples2-7; however, 4 (EEFSEC, DSP, MTCL1, and SFTPD) are novel. We noted 2 loci shared with pulmonary fibrosis8,9 (FAM13A and DSP) but with opposite risk alleles for COPD. None of our loci overlapped with genome-wide associations for asthma; however, one locus has been implicated in the joint susceptibility to asthma and obesity10. We also identified genetic correlation between COPD and asthma. Our findings highlight novel loci, demonstrate the importance of specific lung function loci to COPD, and identify potential regions of genetic overlap between COPD and other respiratory diseases
    corecore