4 research outputs found

    Image_1_Association between genetic variants of membrane transporters and the risk of high-grade hematologic adverse events in a cohort of Mexican children with B-cell acute lymphoblastic leukemia.tif

    No full text
    BackgroundAdvances in the understanding of the pathobiology of childhood B-cell acute lymphoblastic leukemia (B-ALL) have led towards risk-oriented treatment regimens and markedly improved survival rates. However, treatment-related toxicities remain a major cause of mortality in developing countries. One of the most common adverse effects of chemotherapy in B-ALL is the hematologic toxicity, which may be related to genetic variants in membrane transporters that are critical for drug absorption, distribution, and elimination. In this study we detected genetic variants present in a selected group genes of the ABC and SLC families that are associated with the risk of high-grade hematologic adverse events due to chemotherapy treatment in a group of Mexican children with B-ALL.MethodsNext generation sequencing (NGS) was used to screen six genes of the ABC and seven genes of the SLC transporter families, in a cohort of 96 children with B-ALL. The grade of hematologic toxicity was classified according to the National Cancer Institute’s Common Terminology Criteria for Adverse Events (CTCAE) version 5.0, Subsequently, two groups of patients were formed: the null/low-grade (grades 1 and 2) and the high-grade (grades 3 to 5) adverse events groups. To determine whether there is an association between the genetic variants and high-grade hematologic adverse events, logistic regression analyses were performed using co-dominant, dominant, recessive, overdominant and log-additive inheritance models. Odds ratio (OR) and 95% confidence intervals (95% CI) were calculated.ResultsWe found two types of associations among the genetic variants identified as possible predictor factors of hematologic toxicity. One group of variants associated with high-grade toxicity risk: ABCC1 rs129081; ABCC4 rs227409; ABCC5 rs939338, rs1132776, rs3749442, rs4148575, rs4148579 and rs4148580; and another group of protective variants that includes ABCC1 rs212087 and rs212090; SLC22A6 rs4149170, rs4149171 and rs955434.ConclusionThere are genetic variants in the SLC and ABC transporter families present in Mexican children with B-ALL that can be considered as potential risk markers for hematologic toxicity secondary to chemotherapeutic treatment, as well as other protective variants that may be useful in addition to conventional risk stratification for therapeutic decision making in these highly vulnerable patients.</p

    Table_1_Association between genetic variants of membrane transporters and the risk of high-grade hematologic adverse events in a cohort of Mexican children with B-cell acute lymphoblastic leukemia.pdf

    No full text
    BackgroundAdvances in the understanding of the pathobiology of childhood B-cell acute lymphoblastic leukemia (B-ALL) have led towards risk-oriented treatment regimens and markedly improved survival rates. However, treatment-related toxicities remain a major cause of mortality in developing countries. One of the most common adverse effects of chemotherapy in B-ALL is the hematologic toxicity, which may be related to genetic variants in membrane transporters that are critical for drug absorption, distribution, and elimination. In this study we detected genetic variants present in a selected group genes of the ABC and SLC families that are associated with the risk of high-grade hematologic adverse events due to chemotherapy treatment in a group of Mexican children with B-ALL.MethodsNext generation sequencing (NGS) was used to screen six genes of the ABC and seven genes of the SLC transporter families, in a cohort of 96 children with B-ALL. The grade of hematologic toxicity was classified according to the National Cancer Institute’s Common Terminology Criteria for Adverse Events (CTCAE) version 5.0, Subsequently, two groups of patients were formed: the null/low-grade (grades 1 and 2) and the high-grade (grades 3 to 5) adverse events groups. To determine whether there is an association between the genetic variants and high-grade hematologic adverse events, logistic regression analyses were performed using co-dominant, dominant, recessive, overdominant and log-additive inheritance models. Odds ratio (OR) and 95% confidence intervals (95% CI) were calculated.ResultsWe found two types of associations among the genetic variants identified as possible predictor factors of hematologic toxicity. One group of variants associated with high-grade toxicity risk: ABCC1 rs129081; ABCC4 rs227409; ABCC5 rs939338, rs1132776, rs3749442, rs4148575, rs4148579 and rs4148580; and another group of protective variants that includes ABCC1 rs212087 and rs212090; SLC22A6 rs4149170, rs4149171 and rs955434.ConclusionThere are genetic variants in the SLC and ABC transporter families present in Mexican children with B-ALL that can be considered as potential risk markers for hematologic toxicity secondary to chemotherapeutic treatment, as well as other protective variants that may be useful in addition to conventional risk stratification for therapeutic decision making in these highly vulnerable patients.</p

    DataSheet_1_IKZF1plus is a frequent biomarker of adverse prognosis in Mexican pediatric patients with B-acute lymphoblastic leukemia.xlsx

    No full text
    BackgroundRecurrent genetic alterations contributing to leukemogenesis have been identified in pediatric B-cell Acute Lymphoblastic Leukemia (B-ALL), and some are useful for refining classification, prognosis, and treatment selection. IKZF1plus is a complex biomarker associated with a poor prognosis. It is characterized by IKZF1 deletion coexisting with PAX5, CDKN2A/2B, or PAR1 region deletions. The mutational spectrum and clinical impact of these alterations have scarcely been explored in Mexican pediatric patients with B-ALL. Here, we report the frequency of the IKZF1plus profile and the mutational spectrum of IKZF1, PAX5, CDKN2A/2B, and ERG genes and evaluate their impact on overall survival (OS) in a group of patients with B-ALL.MethodsA total of 206 pediatric patients with de novo B-ALL were included. DNA was obtained from bone marrow samples at diagnosis before treatment initiation. A custom-designed next-generation sequencing panel was used for mutational analysis. Kaplan-Meier analysis was used for OS estimation.ResultsWe identified the IKZF1plus profile in 21.8% of patients, which was higher than that previously reported in other studies. A significantly older age (p=0.04), a trend toward high-risk stratification (p=0.06), and a decrease in 5-year Overall Survival (OS) (p=0.009) were observed, although heterogeneous treatment protocols in our cohort would have impacted OS. A mutation frequency higher than that reported was found for IKZF1 (35.9%) and CDKN2A/2B (35.9%) but lower for PAX5 (26.6%). IKZF1MUT group was older at diagnosis (p=0.0002), and most of them were classified as high-risk (73.8%, p=0.02), while patients with CDKN2A/2BMUT had a higher leukocyte count (p=0.01) and a tendency toward a higher percentage of blasts (98.6%, >50% blasts, p=0.05) than the non-mutated patients. A decrease in OS was found in IKZF1MUT and CDKN2A/2BMUT patients, but the significance was lost after IKZF1plus was removed.DiscussionOur findings demonstrated that Mexican patients with B-ALL have a higher prevalence of genetic markers associated with poor outcomes. Incorporating genomic methodologies into the diagnostic process, a significant unmet need in low- and mid-income countries, will allow a comprehensive identification of relevant alterations, improving disease classification, treatment selection, and the general outcome.</p

    DataSheet_2_IKZF1plus is a frequent biomarker of adverse prognosis in Mexican pediatric patients with B-acute lymphoblastic leukemia.docx

    No full text
    BackgroundRecurrent genetic alterations contributing to leukemogenesis have been identified in pediatric B-cell Acute Lymphoblastic Leukemia (B-ALL), and some are useful for refining classification, prognosis, and treatment selection. IKZF1plus is a complex biomarker associated with a poor prognosis. It is characterized by IKZF1 deletion coexisting with PAX5, CDKN2A/2B, or PAR1 region deletions. The mutational spectrum and clinical impact of these alterations have scarcely been explored in Mexican pediatric patients with B-ALL. Here, we report the frequency of the IKZF1plus profile and the mutational spectrum of IKZF1, PAX5, CDKN2A/2B, and ERG genes and evaluate their impact on overall survival (OS) in a group of patients with B-ALL.MethodsA total of 206 pediatric patients with de novo B-ALL were included. DNA was obtained from bone marrow samples at diagnosis before treatment initiation. A custom-designed next-generation sequencing panel was used for mutational analysis. Kaplan-Meier analysis was used for OS estimation.ResultsWe identified the IKZF1plus profile in 21.8% of patients, which was higher than that previously reported in other studies. A significantly older age (p=0.04), a trend toward high-risk stratification (p=0.06), and a decrease in 5-year Overall Survival (OS) (p=0.009) were observed, although heterogeneous treatment protocols in our cohort would have impacted OS. A mutation frequency higher than that reported was found for IKZF1 (35.9%) and CDKN2A/2B (35.9%) but lower for PAX5 (26.6%). IKZF1MUT group was older at diagnosis (p=0.0002), and most of them were classified as high-risk (73.8%, p=0.02), while patients with CDKN2A/2BMUT had a higher leukocyte count (p=0.01) and a tendency toward a higher percentage of blasts (98.6%, >50% blasts, p=0.05) than the non-mutated patients. A decrease in OS was found in IKZF1MUT and CDKN2A/2BMUT patients, but the significance was lost after IKZF1plus was removed.DiscussionOur findings demonstrated that Mexican patients with B-ALL have a higher prevalence of genetic markers associated with poor outcomes. Incorporating genomic methodologies into the diagnostic process, a significant unmet need in low- and mid-income countries, will allow a comprehensive identification of relevant alterations, improving disease classification, treatment selection, and the general outcome.</p
    corecore