4 research outputs found

    IL-12 and GM-CSF in DNA/MVA Immunizations against HIV-1 CRF12_BF Nef Induced T-Cell Responses With an Enhanced Magnitude, Breadth and Quality

    Get PDF
    In Argentina, the HIV epidemic is characterized by the co-circulation of subtype B and BF recombinant viral variants. Nef is an HIV protein highly variable among subtypes, making it a good tool to study the impact of HIV variability in the vaccine design setting. We have previously reported a specific cellular response against NefBF with low cross-reactivity to NefB in mice. The aim of this work was to analyze whether the co-administration of IL-12 and GM-CSF, using DNA and MVA vaccine vectors, could improve the final cellular response induced. Mice received three DNA priming doses of a plasmid that express NefBF plus DNAs expressing IL-12 and/or GM-CSF. Afterwards, all the groups were boosted with a MVAnefBF dose. The highest increase in the magnitude of the NefBF response, compared to that induced in the control was found in the IL-12 group. Importantly, a response with higher breadth was detected in groups which received IL-12 or GM-CSF, evidenced as an increased frequency of recognition of homologous (BF) and heterologous (B) Nef peptides, as well as a higher number of other Nef peptide pools representing different viral subtypes. However, these improvements were lost when both DNA cytokines were simultaneously administered, as the response was focused against the immunodominant peptide with a detrimental response towards subdominant epitopes. The pattern of cytokines secreted and the specific-T-cell proliferative capacity were improved in IL-12 and IL-12+GM-CSF groups. Importantly IL-12 generated a significant higher T-cell avidity against a B heterologous peptide

    T-Cell Immune Responses Against Env from CRF12_BF and Subtype B HIV-1 Show High Clade-Specificity that Can Be Overridden by Multiclade Immunizations

    Get PDF
    BACKGROUND: The extreme genetic diversity of the human immunodeficiency virus type 1 (HIV-1) poses a daunting challenge to the generation of an effective AIDS vaccine. In Argentina, the epidemic is characterized by the high prevalence of infections caused by subtype B and BF variants. The aim of this study was to characterize in mice the immunogenic and antigenic properties of the Env protein from CRF12_BF in comparison with clade B, employing prime-boost schemes with the combination of recombinant DNA and vaccinia virus (VV) vectors. METHODOLOGY/PRINCIPAL FINDINGS: As determined by ELISPOT from splenocytes of animals immunized with either EnvBF or EnvB antigens, the majority of the cellular responses to Env were found to be clade-specific. A detailed peptide mapping of the responses reveal that when there is cross-reactivity, there are no amino acid changes in the peptide sequence or were minimal and located at the peptide ends. In those cases, analysis of T cell polifunctionality and affinity indicated no differences with respect to the cellular responses found against the original homologous sequence. Significantly, application of a mixed immunization combining both clades (B and BF) induced a broader cellular response, in which the majority of the peptides targeted after the single clade vaccinations generated a positive response. In this group we could also find significant cellular and humoral responses against the whole gp120 protein from subtype B. CONCLUSIONS/SIGNIFICANCE: This work has characterized for the first time the immunogenic peptides of certain EnvBF regions, involved in T cell responses. It provides evidence that to improve immune responses to HIV there is a need to combine Env antigens from different clades, highlighting the convenience of the inclusion of BF antigens in future vaccines for geographic regions where these HIV variants circulate

    Identification of (4-(9H-fluoren-9-yl) piperazin-1-yl) methanone derivatives as falcipain 2 inhibitors active against Plasmodium falciparum cultures

    No full text
    Background: Falcipain 2 (FP-2) is the hemoglobin-degrading cysteine protease of Plasmodium falciparum most extensively targeted to develop novel antimalarials. However, no commercial antimalarial drugs based on FP-2 inhibition are available yet due to the low selectivity of most FP-2 inhibitors against the human cysteine proteases. Methods: A structure-based virtual screening (SVBS) using Maybridge HitFinder™ compound database was conducted to identify potential FP-2 inhibitors. In vitro enzymatic and cell-growth inhibition assays were performed for the top-scoring compounds. Docking, molecular dynamics (MD) simulations and free energy calculations were employed to study the interaction of the best hits with FP-2 and other related enzymes. Results and conclusions: Two hits based on 4-(9H-fluoren-9-yl) piperazin-1-yl) methanone scaffold, HTS07940 and HTS08262, were identified as inhibitors of FP-2 (half-maximal inhibitory concentration (IC50) = 64 μM and 14.7 μM, respectively) without a detectable inhibition against the human off-target cathepsin K (hCatK). HTS07940 and HTS08262 inhibited the growth of the multidrug-resistant P. falciparum strain FCR3 in culture (half-maximal inhibitory concentrations (IC50) = 2.91 μM and 34 μM, respectively) and exhibited only moderate cytotoxicity against HeLa cells (Half-maximal cytotoxic concentration (CC50) = 133 μM and 350 μM, respectively). Free energy calculations reproduced the experimental affinities of the hits for FP-2 and explained the selectivity with respect to hCatK. General significance: To the best of our knowledge, HTS07940 stands among the most selective FP-2 inhibitors identified by SBVS reported so far, displaying moderate antiplasmodial activity and low cytotoxicity against human cells. Hence, this compound constitutes a promising lead for the design of more potent and selective FP-2 inhibitors.Fil: Hernández González, Jorge E.. Universidad de La Habana; Cuba. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Salas Sarduy, Emir. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Hernández Ramírez, Luisa F.. Universidad de Antioquia; ColombiaFil: Pascual, María José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Alvarez, Diego Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Pabón, Adriana. Universidad de Antioquia; ColombiaFil: Leite, Vitor B.P.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Pascutti, Pedro G.. Universidade Federal do Rio de Janeiro; BrasilFil: Valiente, Pedro A.. Universidad de La Habana; Cub
    corecore